tabbyAPI-ollama/endpoints/OAI/utils/completion.py
kingbri fb1d2f34c1 OAI: Add response_prefix and fix BOS token issues in chat completions
response_prefix is used to add a prefix before generating the next
message. This is used in many cases such as continuining a prompt
(see #96).

Also if a template has BOS token specified, add_bos_token will
append two BOS tokens. Add a check which strips a starting BOS token
from the prompt if it exists.

Signed-off-by: kingbri <bdashore3@proton.me>
2024-04-25 00:54:43 -04:00

107 lines
3.3 KiB
Python

"""Completion utilities for OAI server."""
import pathlib
from asyncio import CancelledError
import threading
from fastapi import HTTPException
from typing import Optional
from common import model
from common.networking import (
get_generator_error,
handle_request_disconnect,
handle_request_error,
)
from common.utils import unwrap
from endpoints.OAI.types.completion import (
CompletionRequest,
CompletionResponse,
CompletionRespChoice,
CompletionLogProbs,
)
from endpoints.OAI.types.common import UsageStats
def _create_response(generation: dict, model_name: Optional[str]):
"""Create a completion response from the provided text."""
logprob_response = None
token_probs = unwrap(generation.get("token_probs"), {})
if token_probs:
logprobs = unwrap(generation.get("logprobs"), [])
offset = unwrap(generation.get("offset"), [])
logprob_response = CompletionLogProbs(
text_offset=offset if isinstance(offset, list) else [offset],
token_logprobs=token_probs.values(),
tokens=token_probs.keys(),
top_logprobs=logprobs if isinstance(logprobs, list) else [logprobs],
)
choice = CompletionRespChoice(
finish_reason=generation.get("finish_reason"),
text=unwrap(generation.get("text"), ""),
logprobs=logprob_response,
)
prompt_tokens = unwrap(generation.get("prompt_tokens"), 0)
completion_tokens = unwrap(generation.get("generated_tokens"), 0)
response = CompletionResponse(
choices=[choice],
model=unwrap(model_name, ""),
usage=UsageStats(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return response
async def stream_generate_completion(data: CompletionRequest, model_path: pathlib.Path):
"""Streaming generation for completions."""
try:
abort_event = threading.Event()
new_generation = model.container.generate_gen(
data.prompt, abort_event, **data.to_gen_params()
)
async for generation in new_generation:
response = _create_response(generation, model_path.name)
yield response.model_dump_json()
# Break if the generation is finished
if "finish_reason" in generation:
yield "[DONE]"
break
except CancelledError:
# Get out if the request gets disconnected
abort_event.set()
handle_request_disconnect("Completion generation cancelled by user.")
except Exception:
yield get_generator_error(
"Completion aborted. Please check the server console."
)
async def generate_completion(data: CompletionRequest, model_path: pathlib.Path):
"""Non-streaming generate for completions"""
try:
generation = await model.container.generate(data.prompt, **data.to_gen_params())
response = _create_response(generation, model_path.name)
return response
except Exception as exc:
error_message = handle_request_error(
"Completion aborted. Maybe the model was unloaded? "
"Please check the server console."
).error.message
# Server error if there's a generation exception
raise HTTPException(503, error_message) from exc