tabbyAPI-ollama/main.py
kingbri 113643c0df Main: Enable cudaMallocAsync backend by default
Works on cuda 12.4 and up. If CUDA doesn't exist, then don't enable
the backend. This is an env var that needs to be set, so it's not really
possible to set it via config.yml.

This used to be experimental, but it's probably fine to keep it enabled
since it only provides a benefit.

Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
2025-07-27 22:31:38 -04:00

181 lines
5.6 KiB
Python

"""The main tabbyAPI module. Contains the FastAPI server and endpoints."""
# Set this env var for cuda malloc async before torch is initalized
import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "backend:cudaMallocAsync"
import argparse
import asyncio
import pathlib
import platform
import signal
from loguru import logger
from typing import Optional
from common import gen_logging, sampling, model
from common.args import convert_args_to_dict, init_argparser
from common.auth import load_auth_keys
from common.actions import run_subcommand
from common.logger import setup_logger
from common.networking import is_port_in_use
from common.optional_dependencies import dependencies
from common.signals import signal_handler
from common.tabby_config import config
from endpoints.server import start_api
async def entrypoint_async():
"""Async entry function for program startup"""
host = config.network.host
port = config.network.port
# Check if the port is available and attempt to bind a fallback
if is_port_in_use(port):
fallback_port = port + 1
if is_port_in_use(fallback_port):
logger.error(
f"Ports {port} and {fallback_port} are in use by different services.\n"
"Please free up those ports or specify a different one.\n"
"Exiting."
)
return
else:
logger.warning(
f"Port {port} is currently in use. Switching to {fallback_port}."
)
port = fallback_port
# If an initial model name is specified, create a container
# and load the model
model_name = config.model.model_name
if model_name:
model_path = pathlib.Path(config.model.model_dir)
model_path = model_path / model_name
# TODO: remove model_dump()
await model.load_model(
model_path.resolve(),
**config.model.model_dump(exclude_none=True),
draft_model=config.draft_model.model_dump(exclude_none=True),
)
# Load loras after loading the model
if config.lora.loras:
lora_dir = pathlib.Path(config.lora.lora_dir)
# TODO: remove model_dump()
await model.container.load_loras(
lora_dir.resolve(), **config.lora.model_dump()
)
# If an initial embedding model name is specified, create a separate container
# and load the model
embedding_model_name = config.embeddings.embedding_model_name
if embedding_model_name:
embedding_model_path = pathlib.Path(config.embeddings.embedding_model_dir)
embedding_model_path = embedding_model_path / embedding_model_name
try:
# TODO: remove model_dump()
await model.load_embedding_model(
embedding_model_path, **config.embeddings.model_dump()
)
except ImportError as ex:
logger.error(ex.msg)
# Initialize auth keys
await load_auth_keys(config.network.disable_auth)
gen_logging.broadcast_status()
# Set sampler parameter overrides if provided
sampling_override_preset = config.sampling.override_preset
if sampling_override_preset:
try:
await sampling.overrides_from_file(sampling_override_preset)
except FileNotFoundError as e:
logger.warning(str(e))
await start_api(host, port)
def entrypoint(
args: Optional[argparse.Namespace] = None,
parser: Optional[argparse.ArgumentParser] = None,
):
setup_logger()
# Set up signal aborting
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
if platform.system() == "Windows":
from winloop import install
else:
from uvloop import install
# Set loop event policy
install()
# Parse and override config from args
if args is None:
parser = init_argparser()
args = parser.parse_args()
dict_args = convert_args_to_dict(args, parser)
# load config
config.load(dict_args)
# branch to default paths if required
if run_subcommand(args):
return
# Check exllamav2 version and give a descriptive error if it's too old
# Skip if launching unsafely
if config.developer.unsafe_launch:
logger.warning(
"UNSAFE: Skipping ExllamaV2 version check.\n"
"If you aren't a developer, please keep this off!"
)
elif not dependencies.inference:
install_message = (
f"ERROR: Inference dependencies for TabbyAPI are not installed.\n"
"Please update your environment by running an update script "
"(update_scripts/"
f"update_deps.{'bat' if platform.system() == 'Windows' else 'sh'})\n\n"
"Or you can manually run a requirements update "
"using the following command:\n\n"
"For CUDA 12.1:\n"
"pip install --upgrade .[cu121]\n\n"
"For ROCm:\n"
"pip install --upgrade .[amd]\n\n"
)
raise SystemExit(install_message)
# Set the process priority
if config.developer.realtime_process_priority:
import psutil
current_process = psutil.Process(os.getpid())
if platform.system() == "Windows":
current_process.nice(psutil.REALTIME_PRIORITY_CLASS)
else:
current_process.nice(psutil.IOPRIO_CLASS_RT)
logger.warning(
"EXPERIMENTAL: Process priority set to Realtime. \n"
"If you're not running on administrator/sudo, the priority is set to high."
)
# Enter into the async event loop
asyncio.run(entrypoint_async())
if __name__ == "__main__":
entrypoint()