tabbyAPI-ollama/common/sampling.py
kingbri a79c42ff4c Sampling: Make validators simpler
Injecting into Pydantic fields caused issues with serialization for
documentation rendering. Rather than reinvent the wheel again,
switch to a chain of if statements for now. This may change in the
future if subclasses from the base sampler request need to be
validated as well.

Signed-off-by: kingbri <bdashore3@proton.me>
2024-02-11 15:28:43 -05:00

322 lines
10 KiB
Python

"""Common functions for sampling parameters"""
import pathlib
from typing import Dict, List, Optional, Union
from pydantic import AliasChoices, BaseModel, Field
import yaml
from common.logger import init_logger
from common.utils import unwrap, prune_dict
logger = init_logger(__name__)
# Common class for sampler params
class BaseSamplerRequest(BaseModel):
"""Common class for sampler params that are used in APIs"""
max_tokens: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("max_tokens", 150),
examples=[150],
)
generate_window: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("generate_window"),
examples=[512],
)
stop: Optional[Union[str, List[str]]] = Field(
default_factory=lambda: get_default_sampler_value("stop", [])
)
token_healing: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("token_healing", False)
)
temperature: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("temperature", 1.0),
examples=[1.0],
)
temperature_last: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("temperature_last", False)
)
smoothing_factor: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("smoothing_factor", 0.0),
)
top_k: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("top_k", 0),
)
top_p: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("top_p", 1.0),
examples=[1.0],
)
top_a: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("top_a", 0.0)
)
min_p: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("min_p", 0.0)
)
tfs: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("tfs", 1.0),
examples=[1.0],
)
frequency_penalty: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("frequency_penalty", 0.0)
)
presence_penalty: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("presence_penalty", 0.0)
)
repetition_penalty: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("repetition_penalty", 1.0),
examples=[1.0],
)
repetition_decay: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("repetition_decay", 0)
)
mirostat_mode: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("mirostat_mode", 0)
)
mirostat_tau: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("mirostat_tau", 1.5),
examples=[1.5],
)
mirostat_eta: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("mirostat_eta", 0.3),
examples=[0.3],
)
add_bos_token: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("add_bos_token", True)
)
ban_eos_token: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("ban_eos_token", False),
examples=[False],
)
logit_bias: Optional[Dict[int, float]] = Field(
default_factory=lambda: get_default_sampler_value("logit_bias"),
examples=[[{"1": 10}]],
)
negative_prompt: Optional[str] = Field(
default_factory=lambda: get_default_sampler_value("negative_prompt")
)
# Aliased variables
typical: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("typical", 1.0),
validation_alias=AliasChoices("typical", "typical_p"),
description="Aliases: typical_p",
examples=[1.0],
)
penalty_range: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("penalty_range", -1),
validation_alias=AliasChoices(
"penalty_range",
"repetition_range",
"repetition_penalty_range",
),
description="Aliases: repetition_range, repetition_penalty_range",
)
cfg_scale: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("cfg_scale", 1.0),
validation_alias=AliasChoices("cfg_scale", "guidance_scale"),
description="Aliases: guidance_scale",
examples=[1.0],
)
max_temp: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("max_temp", 1.0),
validation_alias=AliasChoices("max_temp", "dynatemp_high"),
description="Aliases: dynatemp_high",
examples=[1.0],
)
min_temp: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("min_temp", 1.0),
validation_alias=AliasChoices("min_temp", "dynatemp_low"),
description="Aliases: dynatemp_low",
examples=[1.0],
)
temp_exponent: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("temp_exponent", 1.0),
validation_alias=AliasChoices("temp_exponent", "dynatemp_exponent"),
examples=[1.0],
)
# TODO: Return back to adaptable class-based validation But that's just too much
# abstraction compared to simple if statements at the moment
def validate_params(self):
"""
Validates sampler parameters to be within sane ranges.
"""
# Temperature
if self.temperature < 0.0:
raise ValueError(
"Temperature must be a non-negative value. " f"Got {self.temperature}"
)
# Smoothing factor
if self.smoothing_factor < 0.0:
raise ValueError(
"Smoothing factor must be a non-negative value. "
f"Got {self.smoothing_factor}"
)
# Top K
if self.top_k < 0:
raise ValueError("Top K must be a non-negative value. " f"Got {self.top_k}")
# Top P
if self.top_p < 0.0 or self.top_p > 1.0:
raise ValueError("Top P must be in [0, 1]. " f"Got {self.top_p}")
# Repetition Penalty
if self.repetition_penalty <= 0.0:
raise ValueError(
"Repetition penalty must be a positive value. "
f"Got {self.repetition_penalty}"
)
# Typical
if self.typical <= 0 and self.typical > 1:
raise ValueError("Typical must be in (0, 1]. " f"Got {self.typical}")
# Dynatemp values
if self.max_temp < 0.0:
raise ValueError(
"Max temp must be a non-negative value. ", f"Got {self.max_temp}"
)
if self.min_temp < 0.0:
raise ValueError(
"Min temp must be a non-negative value. ", f"Got {self.min_temp}"
)
if self.temp_exponent < 0.0:
raise ValueError(
"Temp exponent must be a non-negative value. ",
f"Got {self.temp_exponent}",
)
def to_gen_params(self, **kwargs):
"""Converts samplers to internal generation params"""
# Add forced overrides if present
apply_forced_sampler_overrides(self)
self.validate_params()
# Convert stop to an array of strings
if isinstance(self.stop, str):
self.stop = [self.stop]
gen_params = {
"max_tokens": self.max_tokens,
"generate_window": self.generate_window,
"stop": self.stop,
"add_bos_token": self.add_bos_token,
"ban_eos_token": self.ban_eos_token,
"token_healing": self.token_healing,
"logit_bias": self.logit_bias,
"temperature": self.temperature,
"temperature_last": self.temperature_last,
"min_temp": self.min_temp,
"max_temp": self.max_temp,
"temp_exponent": self.temp_exponent,
"smoothing_factor": self.smoothing_factor,
"top_k": self.top_k,
"top_p": self.top_p,
"top_a": self.top_a,
"typical": self.typical,
"min_p": self.min_p,
"tfs": self.tfs,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"repetition_penalty": self.repetition_penalty,
"penalty_range": self.penalty_range,
"repetition_decay": self.repetition_decay,
"mirostat": self.mirostat_mode == 2,
"mirostat_tau": self.mirostat_tau,
"mirostat_eta": self.mirostat_eta,
"cfg_scale": self.cfg_scale,
"negative_prompt": self.negative_prompt,
}
return {**gen_params, **kwargs}
# Global for default overrides
DEFAULT_OVERRIDES = {}
def get_sampler_overrides():
return DEFAULT_OVERRIDES
def set_overrides_from_dict(new_overrides: dict):
"""Wrapper function to update sampler overrides"""
global DEFAULT_OVERRIDES
if isinstance(new_overrides, dict):
DEFAULT_OVERRIDES = prune_dict(new_overrides)
else:
raise TypeError("New sampler overrides must be a dict!")
def set_overrides_from_file(preset_name: str):
"""Fetches an override preset from a file"""
preset_path = pathlib.Path(f"sampler_overrides/{preset_name}.yml")
if preset_path.exists():
with open(preset_path, "r", encoding="utf8") as raw_preset:
preset = yaml.safe_load(raw_preset)
set_overrides_from_dict(preset)
logger.info("Applied sampler overrides from file.")
else:
error_message = (
f'Sampler override file named "{preset_name}" was not found. '
+ "Make sure it's located in the sampler_overrides folder."
)
raise FileNotFoundError(error_message)
# TODO: Maybe move these into the class
# Classmethods aren't recognized in pydantic default_factories
def get_default_sampler_value(key, fallback=None):
"""Gets an overridden default sampler value"""
return unwrap(DEFAULT_OVERRIDES.get(key, {}).get("override"), fallback)
def apply_forced_sampler_overrides(params: BaseSamplerRequest):
"""Forcefully applies overrides if specified by the user"""
for var, value in DEFAULT_OVERRIDES.items():
override = value.get("override")
force = unwrap(value.get("force"), False)
if force and override:
setattr(params, var, override)