tabbyAPI-ollama/OAI/utils/completion.py
kingbri f627485534 OAI: Fix completion token fetching
The generator returns generated_tokens in the dict.

Signed-off-by: kingbri <bdashore3@proton.me>
2024-02-11 01:12:13 -05:00

154 lines
4.7 KiB
Python

""" Utility functions for the OpenAI server. """
from typing import Optional
from common.utils import unwrap
from OAI.types.chat_completion import (
ChatCompletionLogprobs,
ChatCompletionLogprob,
ChatCompletionMessage,
ChatCompletionRespChoice,
ChatCompletionStreamChunk,
ChatCompletionResponse,
ChatCompletionStreamChoice,
)
from OAI.types.completion import (
CompletionResponse,
CompletionRespChoice,
CompletionLogProbs,
)
from OAI.types.common import UsageStats
def create_completion_response(generation: dict, model_name: Optional[str]):
"""Create a completion response from the provided text."""
logprob_response = None
token_probs = unwrap(generation.get("token_probs"), {})
if token_probs:
logprobs = unwrap(generation.get("logprobs"), [])
offset = unwrap(generation.get("offset"), [])
logprob_response = CompletionLogProbs(
text_offset=offset if isinstance(offset, list) else [offset],
token_logprobs=token_probs.values(),
tokens=token_probs.keys(),
top_logprobs=logprobs if isinstance(logprobs, list) else [logprobs],
)
choice = CompletionRespChoice(
finish_reason="Generated",
text=unwrap(generation.get("text"), ""),
logprobs=logprob_response,
)
prompt_tokens = unwrap(generation.get("prompt_tokens"), 0)
completion_tokens = unwrap(generation.get("generated_tokens"), 0)
response = CompletionResponse(
choices=[choice],
model=unwrap(model_name, ""),
usage=UsageStats(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return response
def create_chat_completion_response(generation: dict, model_name: Optional[str]):
"""Create a chat completion response from the provided text."""
message = ChatCompletionMessage(
role="assistant", content=unwrap(generation.get("text"), "")
)
logprob_response = None
token_probs = unwrap(generation.get("token_probs"), {})
if token_probs:
logprobs = unwrap(generation.get("logprobs"), [])
collected_token_probs = []
for index, token in enumerate(token_probs.keys()):
top_logprobs = [
ChatCompletionLogprob(token=token, logprob=logprob)
for token, logprob in logprobs[index].items()
]
collected_token_probs.append(
ChatCompletionLogprob(
token=token,
logprob=token_probs[token],
top_logprobs=top_logprobs,
)
)
logprob_response = ChatCompletionLogprobs(content=collected_token_probs)
choice = ChatCompletionRespChoice(
finish_reason="Generated", message=message, logprobs=logprob_response
)
prompt_tokens = unwrap(generation.get("prompt_tokens"), 0)
completion_tokens = unwrap(generation.get("completion_tokens"), 0)
response = ChatCompletionResponse(
choices=[choice],
model=unwrap(model_name, ""),
usage=UsageStats(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return response
def create_chat_completion_stream_chunk(
const_id: str,
generation: Optional[dict] = None,
model_name: Optional[str] = None,
finish_reason: Optional[str] = None,
):
"""Create a chat completion stream chunk from the provided text."""
logprob_response = None
if finish_reason:
message = {}
else:
message = ChatCompletionMessage(
role="assistant", content=unwrap(generation.get("text"), "")
)
token_probs = unwrap(generation.get("token_probs"), {})
if token_probs:
logprobs = unwrap(generation.get("logprobs"), {})
top_logprobs = [
ChatCompletionLogprob(token=token, logprob=logprob)
for token, logprob in logprobs.items()
]
generated_token = next(iter(token_probs))
token_prob_response = ChatCompletionLogprob(
token=generated_token,
logprob=token_probs[generated_token],
top_logprobs=top_logprobs,
)
logprob_response = ChatCompletionLogprobs(content=[token_prob_response])
# The finish reason can be None
choice = ChatCompletionStreamChoice(
finish_reason=finish_reason, delta=message, logprobs=logprob_response
)
chunk = ChatCompletionStreamChunk(
id=const_id, choices=[choice], model=unwrap(model_name, "")
)
return chunk