ExllamaV2 should check for solely exllamav2, otherwise errors don't make sense. Migrate the combined "exl2" computed property to "inference" since those are the required dependencies for minimal inference. Signed-off-by: kingbri <bdashore3@proton.me>
180 lines
5.2 KiB
Python
180 lines
5.2 KiB
Python
"""
|
|
Manages the storage and utility of model containers.
|
|
|
|
Containers exist as a common interface for backends.
|
|
"""
|
|
|
|
import pathlib
|
|
from enum import Enum
|
|
from fastapi import HTTPException
|
|
from loguru import logger
|
|
from typing import Optional
|
|
|
|
from common.logger import get_loading_progress_bar
|
|
from common.networking import handle_request_error
|
|
from common.tabby_config import config
|
|
from common.optional_dependencies import dependencies
|
|
|
|
if dependencies.exllamav2:
|
|
from backends.exllamav2.model import ExllamaV2Container
|
|
|
|
# Global model container
|
|
container: Optional[ExllamaV2Container] = None
|
|
embeddings_container = None
|
|
|
|
|
|
if dependencies.extras:
|
|
from backends.infinity.model import InfinityContainer
|
|
|
|
embeddings_container: Optional[InfinityContainer] = None
|
|
|
|
|
|
class ModelType(Enum):
|
|
MODEL = "model"
|
|
DRAFT = "draft"
|
|
EMBEDDING = "embedding"
|
|
|
|
|
|
def load_progress(module, modules):
|
|
"""Wrapper callback for load progress."""
|
|
yield module, modules
|
|
|
|
|
|
async def unload_model(skip_wait: bool = False, shutdown: bool = False):
|
|
"""Unloads a model"""
|
|
global container
|
|
|
|
await container.unload(skip_wait=skip_wait, shutdown=shutdown)
|
|
container = None
|
|
|
|
|
|
async def load_model_gen(model_path: pathlib.Path, **kwargs):
|
|
"""Generator to load a model"""
|
|
global container
|
|
|
|
# Check if the model is already loaded
|
|
if container and container.model:
|
|
loaded_model_name = container.model_dir.name
|
|
|
|
if loaded_model_name == model_path.name and container.model_loaded:
|
|
raise ValueError(
|
|
f'Model "{loaded_model_name}" is already loaded! Aborting.'
|
|
)
|
|
|
|
logger.info("Unloading existing model.")
|
|
await unload_model()
|
|
|
|
# Merge with config defaults
|
|
kwargs = {**config.model_defaults, **kwargs}
|
|
|
|
# Create a new container
|
|
container = await ExllamaV2Container.create(model_path.resolve(), False, **kwargs)
|
|
|
|
model_type = "draft" if container.draft_config else "model"
|
|
load_status = container.load_gen(load_progress, **kwargs)
|
|
|
|
progress = get_loading_progress_bar()
|
|
progress.start()
|
|
|
|
try:
|
|
async for module, modules in load_status:
|
|
if module == 0:
|
|
loading_task = progress.add_task(
|
|
f"[cyan]Loading {model_type} modules", total=modules
|
|
)
|
|
else:
|
|
progress.advance(loading_task)
|
|
|
|
yield module, modules, model_type
|
|
|
|
if module == modules:
|
|
# Switch to model progress if the draft model is loaded
|
|
if model_type == "draft":
|
|
model_type = "model"
|
|
else:
|
|
progress.stop()
|
|
finally:
|
|
progress.stop()
|
|
|
|
|
|
async def load_model(model_path: pathlib.Path, **kwargs):
|
|
async for _ in load_model_gen(model_path, **kwargs):
|
|
pass
|
|
|
|
|
|
async def load_loras(lora_dir, **kwargs):
|
|
"""Wrapper to load loras."""
|
|
if len(container.get_loras()) > 0:
|
|
await unload_loras()
|
|
|
|
return await container.load_loras(lora_dir, **kwargs)
|
|
|
|
|
|
async def unload_loras():
|
|
"""Wrapper to unload loras"""
|
|
await container.unload(loras_only=True)
|
|
|
|
|
|
async def load_embedding_model(model_path: pathlib.Path, **kwargs):
|
|
global embeddings_container
|
|
|
|
# Break out if infinity isn't installed
|
|
if not dependencies.extras:
|
|
raise ImportError(
|
|
"Skipping embeddings because infinity-emb is not installed.\n"
|
|
"Please run the following command in your environment "
|
|
"to install extra packages:\n"
|
|
"pip install -U .[extras]"
|
|
)
|
|
|
|
# Check if the model is already loaded
|
|
if embeddings_container and embeddings_container.engine:
|
|
loaded_model_name = embeddings_container.model_dir.name
|
|
|
|
if loaded_model_name == model_path.name and embeddings_container.model_loaded:
|
|
raise ValueError(
|
|
f'Embeddings model "{loaded_model_name}" is already loaded! Aborting.'
|
|
)
|
|
|
|
logger.info("Unloading existing embeddings model.")
|
|
await unload_embedding_model()
|
|
|
|
embeddings_container = InfinityContainer(model_path)
|
|
await embeddings_container.load(**kwargs)
|
|
|
|
|
|
async def unload_embedding_model():
|
|
global embeddings_container
|
|
|
|
await embeddings_container.unload()
|
|
embeddings_container = None
|
|
|
|
|
|
async def check_model_container():
|
|
"""FastAPI depends that checks if a model isn't loaded or currently loading."""
|
|
|
|
if container is None or not (container.model_is_loading or container.model_loaded):
|
|
error_message = handle_request_error(
|
|
"No models are currently loaded.",
|
|
exc_info=False,
|
|
).error.message
|
|
|
|
raise HTTPException(400, error_message)
|
|
|
|
|
|
async def check_embeddings_container():
|
|
"""
|
|
FastAPI depends that checks if an embeddings model is loaded.
|
|
|
|
This is the same as the model container check, but with embeddings instead.
|
|
"""
|
|
|
|
if embeddings_container is None or not (
|
|
embeddings_container.model_is_loading or embeddings_container.model_loaded
|
|
):
|
|
error_message = handle_request_error(
|
|
"No embedding models are currently loaded.",
|
|
exc_info=False,
|
|
).error.message
|
|
|
|
raise HTTPException(400, error_message)
|