tabbyAPI-ollama/endpoints/core/utils/model.py
kingbri d23fefbecd API + Model: Fix application of defaults
use_as_default was not being properly applied into model overrides.
For compartmentalization's sake, apply all overrides in a single function
to avoid clutter.

In addition, fix where the traditional /v1/model/load endpoint checks
for draft options. These can be applied via an inline config, so let
any failures fallthrough.

Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
2025-07-03 14:37:34 -04:00

123 lines
3.5 KiB
Python

import pathlib
from asyncio import CancelledError
from typing import Optional
from common import model
from common.networking import get_generator_error, handle_request_disconnect
from common.tabby_config import config
from endpoints.core.types.model import (
ModelCard,
ModelList,
ModelLoadRequest,
ModelLoadResponse,
)
def get_model_list(model_path: pathlib.Path, draft_model_path: Optional[str] = None):
"""Get the list of models from the provided path."""
# Convert the provided draft model path to a pathlib path for
# equality comparisons
if draft_model_path:
draft_model_path = pathlib.Path(draft_model_path).resolve()
model_card_list = ModelList()
for path in model_path.iterdir():
# Don't include the draft models path
if path.is_dir() and path != draft_model_path:
model_card = ModelCard(id=path.name)
model_card_list.data.append(model_card) # pylint: disable=no-member
return model_card_list
async def get_current_model_list(model_type: str = "model"):
"""
Gets the current model in list format and with path only.
Unified for fetching both models and embedding models.
"""
current_models = []
model_path = None
# Make sure the model container exists
match model_type:
case "model":
if model.container:
model_path = model.container.model_dir
case "draft":
if model.container:
model_path = model.container.draft_model_dir
case "embedding":
if model.embeddings_container:
model_path = model.embeddings_container.model_dir
if model_path:
current_models.append(ModelCard(id=model_path.name))
return ModelList(data=current_models)
def get_current_model():
"""Gets the current model with all parameters."""
model_card = model.container.model_info()
return model_card
def get_dummy_models():
if config.model.dummy_model_names:
return [ModelCard(id=dummy_id) for dummy_id in config.model.dummy_model_names]
else:
return [ModelCard(id="gpt-3.5-turbo")]
async def stream_model_load(
data: ModelLoadRequest,
model_path: pathlib.Path,
):
"""Request generation wrapper for the loading process."""
# Get trimmed load data
load_data = data.model_dump(exclude_none=True)
# Set the draft model directory
load_data.setdefault("draft_model", {})["draft_model_dir"] = (
config.draft_model.draft_model_dir
)
load_status = model.load_model_gen(
model_path, skip_wait=data.skip_queue, **load_data
)
try:
async for module, modules, model_type in load_status:
if module != 0:
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="processing",
)
yield response.model_dump_json()
if module == modules:
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="finished",
)
yield response.model_dump_json()
except CancelledError:
# Get out if the request gets disconnected
handle_request_disconnect(
"Model load cancelled by user. "
"Please make sure to run unload to free up resources."
)
except Exception as exc:
yield get_generator_error(str(exc))