This is the first in many future commits that will overhaul the API to be more robust and concurrent. The model is admin-first where the admin can do anything in-case something goes awry. Previously, calls to long running synchronous background tasks would block the entire API, making it ignore any terminal signals until generation is completed. To fix this, levrage FastAPI's run_in_threadpool to offload the long running tasks to another thread. However, signals to abort the process still kept the background thread running and made the terminal hang. This was due to an issue with Uvicorn not propegating the SIGINT signal across threads in its event loop. To fix this in a catch-all way, run the API processes in a separate thread so the main thread can still kill the process if needed. In addition, make request error logging more robust and refer to the console for full error logs rather than creating a long message on the client-side. Finally, add state checks to see if a model is fully loaded before generating a completion. Signed-off-by: kingbri <bdashore3@proton.me>
966 lines
36 KiB
Python
966 lines
36 KiB
Python
"""The model container class for ExLlamaV2 models."""
|
|
import gc
|
|
from itertools import zip_longest
|
|
import pathlib
|
|
import time
|
|
|
|
import torch
|
|
from exllamav2 import (
|
|
ExLlamaV2,
|
|
ExLlamaV2Config,
|
|
ExLlamaV2Cache,
|
|
ExLlamaV2Cache_8bit,
|
|
ExLlamaV2Tokenizer,
|
|
ExLlamaV2Lora,
|
|
)
|
|
from exllamav2.generator import ExLlamaV2StreamingGenerator, ExLlamaV2Sampler
|
|
from typing import List, Optional, Union
|
|
|
|
from backends.exllamav2.grammar import ExLlamaV2Grammar
|
|
from common.gen_logging import log_generation_params, log_prompt, log_response
|
|
from common.templating import (
|
|
PromptTemplate,
|
|
find_template_from_model,
|
|
get_template_from_model_json,
|
|
get_template_from_file,
|
|
)
|
|
from common.utils import coalesce, unwrap
|
|
from common.logger import init_logger
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class ExllamaV2Container:
|
|
"""The model container class for ExLlamaV2 models."""
|
|
|
|
# Exl2 vars
|
|
config: Optional[ExLlamaV2Config] = None
|
|
draft_config: Optional[ExLlamaV2Config] = None
|
|
model: Optional[ExLlamaV2] = None
|
|
draft_model: Optional[ExLlamaV2] = None
|
|
cache: Optional[ExLlamaV2Cache] = None
|
|
draft_cache: Optional[ExLlamaV2Cache] = None
|
|
tokenizer: Optional[ExLlamaV2Tokenizer] = None
|
|
generator: Optional[ExLlamaV2StreamingGenerator] = None
|
|
prompt_template: Optional[PromptTemplate] = None
|
|
active_loras: List[ExLlamaV2Lora] = []
|
|
|
|
# Internal config vars
|
|
cache_fp8: bool = False
|
|
use_cfg: bool = False
|
|
|
|
# GPU split vars
|
|
gpu_split: Optional[list] = None
|
|
gpu_split_auto: bool = True
|
|
autosplit_reserve: List[float] = [96 * 1024**2]
|
|
|
|
# Load state
|
|
model_loaded: bool = False
|
|
|
|
def __init__(self, model_directory: pathlib.Path, quiet=False, **kwargs):
|
|
"""
|
|
Create model container
|
|
|
|
Args:
|
|
model_dir (int): Model directory containing config.json,
|
|
tokenizer.model etc.
|
|
quiet (bool): Suppress console output
|
|
load_progress_callback (function, optional): A function to call for
|
|
each module loaded. Prototype:
|
|
def progress(loaded_modules: int, total_modules: int,
|
|
loading_draft: bool)
|
|
**kwargs:
|
|
`cache_mode` (str): Sets cache mode, "FP16" or "FP8"
|
|
(defaulf: "FP16")
|
|
'max_seq_len' (int): Override model's default max sequence
|
|
length (default: 4096)
|
|
'rope_scale' (float): Set RoPE scaling factor for model
|
|
(default: 1.0)
|
|
'rope_alpha' (float): Set RoPE alpha (NTK) factor for model
|
|
(default: 1.0)
|
|
'prompt_template' (str): Manually sets the prompt template for
|
|
this model (default: None)
|
|
'chunk_size' (int): Sets the maximum chunk size for the model
|
|
(default: 2048)
|
|
Inferencing in chunks reduces overall VRAM overhead by
|
|
processing very long sequences in smaller batches. This
|
|
limits the size of temporary buffers needed for the hidden
|
|
state and attention weights.
|
|
'draft_model_dir' (str): Draft model directory
|
|
'draft_rope_scale' (float): Set RoPE scaling factor for draft
|
|
model (default: 1.0)
|
|
'draft_rope_alpha' (float): RoPE alpha (NTK) factor for draft
|
|
model. By default, the draft model's alpha value is
|
|
calculated automatically to scale to the size of the
|
|
full model.
|
|
'lora_dir' (str): LoRA directory
|
|
'loras' (list[dict]): List of loras to be loaded, consisting of
|
|
'name' and 'scaling'
|
|
'gpu_split_auto' (bool): Automatically split model across
|
|
available devices (default: True)
|
|
'gpu_split' (list[float]): Allocation for weights and (some)
|
|
tensors, per device
|
|
'no_flash_attn' (bool): Turns off flash attention
|
|
(increases vram usage) (default: False)
|
|
'use_cfg" (bool): Enables CFG support. Disables flash attention
|
|
(default: False)
|
|
"""
|
|
|
|
self.quiet = quiet
|
|
|
|
self.cache_fp8 = "cache_mode" in kwargs and kwargs["cache_mode"] == "FP8"
|
|
|
|
# Turn off GPU split if the user is using 1 GPU
|
|
gpu_count = torch.cuda.device_count()
|
|
gpu_split_auto = unwrap(kwargs.get("gpu_split_auto"), True)
|
|
|
|
if gpu_count > 1 and gpu_split_auto:
|
|
# Auto GPU split parameters
|
|
self.gpu_split_auto = gpu_split_auto
|
|
|
|
autosplit_reserve_megabytes = unwrap(kwargs.get("autosplit_reserve"), [96])
|
|
self.autosplit_reserve = list(
|
|
map(lambda value: value * 1024**2, autosplit_reserve_megabytes)
|
|
)
|
|
elif gpu_count > 1:
|
|
# Manual GPU split
|
|
self.gpu_split = kwargs.get("gpu_split")
|
|
self.gpu_split_auto = False
|
|
else:
|
|
# One GPU setup
|
|
self.gpu_split_auto = False
|
|
logger.info("Disabling GPU split because one GPU is in use.")
|
|
|
|
self.config = ExLlamaV2Config()
|
|
self.config.model_dir = str(model_directory.resolve())
|
|
|
|
# Make the max seq len 4096 before preparing the config
|
|
# This is a better default than 2038
|
|
self.config.max_seq_len = 4096
|
|
self.config.prepare()
|
|
|
|
# Then override the base_seq_len if present
|
|
override_base_seq_len = kwargs.get("override_base_seq_len")
|
|
if override_base_seq_len:
|
|
self.config.max_seq_len = override_base_seq_len
|
|
|
|
# Grab the base model's sequence length before overrides for
|
|
# rope calculations
|
|
base_seq_len = self.config.max_seq_len
|
|
|
|
# Set the target seq len if present
|
|
target_max_seq_len = kwargs.get("max_seq_len")
|
|
if target_max_seq_len:
|
|
self.config.max_seq_len = target_max_seq_len
|
|
|
|
# Set the rope scale
|
|
self.config.scale_pos_emb = unwrap(
|
|
kwargs.get("rope_scale"), self.config.scale_pos_emb
|
|
)
|
|
|
|
# Automatically calculate rope alpha
|
|
self.config.scale_alpha_value = unwrap(
|
|
kwargs.get("rope_alpha"), self.calculate_rope_alpha(base_seq_len)
|
|
)
|
|
|
|
# Enable CFG if present
|
|
self.use_cfg = unwrap(kwargs.get("use_cfg"), False)
|
|
|
|
# Enable fasttensors loading if present
|
|
self.config.fasttensors = unwrap(kwargs.get("fasttensors"), False)
|
|
|
|
# Turn off flash attention if CFG is on
|
|
# Workaround until batched FA2 is fixed in exllamav2 upstream
|
|
self.config.no_flash_attn = (
|
|
True if self.use_cfg else unwrap(kwargs.get("no_flash_attention"), False)
|
|
)
|
|
|
|
# low_mem is currently broken in exllamav2. Don't use it until it's
|
|
# fixed.
|
|
"""
|
|
if "low_mem" in kwargs and kwargs["low_mem"]:
|
|
self.config.set_low_mem()
|
|
"""
|
|
|
|
# Try to set prompt template
|
|
self.prompt_template = self.find_prompt_template(
|
|
kwargs.get("prompt_template"), model_directory
|
|
)
|
|
|
|
# Catch all for template lookup errors
|
|
if self.prompt_template:
|
|
logger.info(
|
|
f"Using template {self.prompt_template.name} " "for chat completions."
|
|
)
|
|
else:
|
|
logger.warning(
|
|
"Chat completions are disabled because a prompt "
|
|
"template wasn't provided or auto-detected."
|
|
)
|
|
|
|
# Set num of experts per token if provided
|
|
num_experts_override = kwargs.get("num_experts_per_token")
|
|
if num_experts_override:
|
|
self.config.num_experts_per_token = kwargs.get("num_experts_per_token")
|
|
|
|
chunk_size = min(
|
|
unwrap(kwargs.get("chunk_size"), 2048), self.config.max_seq_len
|
|
)
|
|
self.config.max_input_len = chunk_size
|
|
self.config.max_attn_size = chunk_size**2
|
|
|
|
draft_args = unwrap(kwargs.get("draft"), {})
|
|
draft_model_name = draft_args.get("draft_model_name")
|
|
enable_draft = draft_args and draft_model_name
|
|
|
|
# Always disable draft if params are incorrectly configured
|
|
if draft_args and draft_model_name is None:
|
|
logger.warning(
|
|
"Draft model is disabled because a model name "
|
|
"wasn't provided. Please check your config.yml!"
|
|
)
|
|
enable_draft = False
|
|
|
|
if enable_draft:
|
|
self.draft_config = ExLlamaV2Config()
|
|
draft_model_path = pathlib.Path(
|
|
unwrap(draft_args.get("draft_model_dir"), "models")
|
|
)
|
|
draft_model_path = draft_model_path / draft_model_name
|
|
|
|
self.draft_config.model_dir = str(draft_model_path.resolve())
|
|
self.draft_config.prepare()
|
|
|
|
self.draft_config.scale_pos_emb = unwrap(
|
|
draft_args.get("draft_rope_scale"), 1.0
|
|
)
|
|
|
|
# Automatically calculate draft rope alpha
|
|
self.draft_config.scale_alpha_value = unwrap(
|
|
draft_args.get("draft_rope_alpha"),
|
|
self.calculate_rope_alpha(self.draft_config.max_seq_len),
|
|
)
|
|
self.draft_config.max_seq_len = self.config.max_seq_len
|
|
|
|
if "chunk_size" in kwargs:
|
|
self.draft_config.max_input_len = kwargs["chunk_size"]
|
|
self.draft_config.max_attn_size = kwargs["chunk_size"] ** 2
|
|
|
|
def find_prompt_template(self, prompt_template_name, model_directory):
|
|
"""Tries to find a prompt template using various methods"""
|
|
|
|
logger.info("Attempting to load a prompt template if present.")
|
|
|
|
find_template_functions = [
|
|
lambda: get_template_from_model_json(
|
|
pathlib.Path(self.config.model_dir) / "tokenizer_config.json",
|
|
"chat_template",
|
|
"from_tokenizer_config",
|
|
),
|
|
lambda: get_template_from_file(find_template_from_model(model_directory)),
|
|
]
|
|
|
|
# Add lookup from prompt template name if provided
|
|
if prompt_template_name:
|
|
find_template_functions.insert(
|
|
0, lambda: get_template_from_file(prompt_template_name)
|
|
)
|
|
|
|
for func in find_template_functions:
|
|
try:
|
|
prompt_template = func()
|
|
if prompt_template is not None:
|
|
return prompt_template
|
|
except (FileNotFoundError, LookupError):
|
|
continue
|
|
|
|
def calculate_rope_alpha(self, base_seq_len):
|
|
"""Calculate the rope alpha value for a given sequence length."""
|
|
ratio = self.config.max_seq_len / base_seq_len
|
|
|
|
# Default to a 1 alpha if the sequence length is ever less
|
|
# than or equal to 1
|
|
if ratio <= 1.0:
|
|
alpha = 1
|
|
else:
|
|
alpha = -0.13436 + 0.80541 * ratio + 0.28833 * ratio**2
|
|
return alpha
|
|
|
|
def get_model_path(self, is_draft: bool = False):
|
|
"""Get the path for this model."""
|
|
|
|
model_path = pathlib.Path(
|
|
self.draft_config.model_dir if is_draft else self.config.model_dir
|
|
)
|
|
return model_path
|
|
|
|
def load(self, progress_callback=None):
|
|
"""
|
|
Load model
|
|
|
|
Args:
|
|
progress_callback (function, optional): A function to call for each
|
|
module loaded. Prototype:
|
|
def progress(loaded_modules: int, total_modules: int)
|
|
"""
|
|
|
|
for _ in self.load_gen(progress_callback):
|
|
pass
|
|
|
|
def load_loras(self, lora_directory: pathlib.Path, **kwargs):
|
|
"""
|
|
Load loras
|
|
"""
|
|
|
|
loras = unwrap(kwargs.get("loras"), [])
|
|
success: List[str] = []
|
|
failure: List[str] = []
|
|
|
|
for lora in loras:
|
|
lora_name = lora.get("name")
|
|
lora_scaling = unwrap(lora.get("scaling"), 1.0)
|
|
|
|
if lora_name is None:
|
|
logger.warning(
|
|
"One of your loras does not have a name. Please check your "
|
|
"config.yml! Skipping lora load."
|
|
)
|
|
failure.append(lora_name)
|
|
continue
|
|
|
|
logger.info(f"Loading lora: {lora_name} at scaling {lora_scaling}")
|
|
lora_path = lora_directory / lora_name
|
|
# FIXME(alpin): Does self.model need to be passed here?
|
|
self.active_loras.append(
|
|
ExLlamaV2Lora.from_directory(self.model, lora_path, lora_scaling)
|
|
)
|
|
logger.info(f"Lora successfully loaded: {lora_name}")
|
|
success.append(lora_name)
|
|
|
|
# Return success and failure names
|
|
return {"success": success, "failure": failure}
|
|
|
|
def load_gen(self, progress_callback=None):
|
|
"""
|
|
Load model, generator function
|
|
|
|
Args:
|
|
progress_callback (function, optional): A function to call for each
|
|
module loaded. Prototype:
|
|
def progress(loaded_modules: int, total_modules: int)
|
|
"""
|
|
|
|
# Load tokenizer
|
|
self.tokenizer = ExLlamaV2Tokenizer(self.config)
|
|
|
|
# Calculate autosplit reserve for all GPUs
|
|
gpu_count = torch.cuda.device_count()
|
|
autosplit_reserve = self.autosplit_reserve + [0] * (
|
|
gpu_count - len(self.autosplit_reserve)
|
|
)
|
|
|
|
# Load draft model if a config is present
|
|
if self.draft_config:
|
|
self.draft_model = ExLlamaV2(self.draft_config)
|
|
if not self.quiet:
|
|
logger.info("Loading draft model: " + self.draft_config.model_dir)
|
|
|
|
self.draft_cache = ExLlamaV2Cache(self.draft_model, lazy=True)
|
|
yield from self.draft_model.load_autosplit_gen(
|
|
self.draft_cache,
|
|
reserve_vram=autosplit_reserve,
|
|
last_id_only=True,
|
|
callback_gen=progress_callback,
|
|
)
|
|
|
|
# Test VRAM allocation with a full-length forward pass
|
|
input_ids = torch.zeros((1, self.config.max_input_len), dtype=torch.long)
|
|
self.draft_model.forward(input_ids, cache=self.cache, preprocess_only=True)
|
|
|
|
self.model = ExLlamaV2(self.config)
|
|
if not self.quiet:
|
|
logger.info("Loading model: " + self.config.model_dir)
|
|
|
|
# Load model with manual split
|
|
# Entrypoint for single GPU users
|
|
if not self.gpu_split_auto:
|
|
logger.info("Loading with a manual GPU split (or a one GPU setup)")
|
|
|
|
for value in self.model.load_gen(
|
|
self.gpu_split,
|
|
callback_gen=progress_callback,
|
|
):
|
|
if value:
|
|
yield value
|
|
|
|
batch_size = 2 if self.use_cfg else 1
|
|
if self.cache_fp8:
|
|
self.cache = ExLlamaV2Cache_8bit(
|
|
self.model, lazy=self.gpu_split_auto, batch_size=batch_size
|
|
)
|
|
else:
|
|
self.cache = ExLlamaV2Cache(
|
|
self.model, lazy=self.gpu_split_auto, batch_size=batch_size
|
|
)
|
|
|
|
# Load model with autosplit
|
|
if self.gpu_split_auto:
|
|
logger.info("Loading with autosplit")
|
|
|
|
for value in self.model.load_autosplit_gen(
|
|
self.cache,
|
|
reserve_vram=autosplit_reserve,
|
|
last_id_only=True,
|
|
callback_gen=progress_callback,
|
|
):
|
|
if value:
|
|
yield value
|
|
|
|
# Test VRAM allocation with a full-length forward pass
|
|
input_ids = torch.zeros((1, self.config.max_input_len), dtype=torch.long)
|
|
self.model.forward(input_ids, cache=self.cache, preprocess_only=True)
|
|
|
|
# Create generator
|
|
self.generator = ExLlamaV2StreamingGenerator(
|
|
self.model,
|
|
self.cache,
|
|
self.tokenizer,
|
|
self.draft_model,
|
|
self.draft_cache,
|
|
)
|
|
|
|
# Always return logprobs and logits
|
|
self.generator.return_probabilities = True
|
|
self.generator.return_logits = True
|
|
|
|
# Clean up any extra vram usage from torch and cuda
|
|
# (Helps reduce VRAM bottlenecking on Windows)
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
# Update model load state
|
|
self.model_loaded = True
|
|
logger.info("Model successfully loaded.")
|
|
|
|
def unload(self, loras_only: bool = False):
|
|
"""
|
|
Free all VRAM resources used by this model
|
|
"""
|
|
|
|
for lora in self.active_loras:
|
|
lora.unload()
|
|
|
|
self.active_loras = []
|
|
|
|
# Unload the entire model if not just unloading loras
|
|
if not loras_only:
|
|
if self.model:
|
|
self.model.unload()
|
|
self.model = None
|
|
|
|
if self.draft_model:
|
|
self.draft_model.unload()
|
|
self.draft_model = None
|
|
|
|
self.config = None
|
|
self.cache = None
|
|
self.tokenizer = None
|
|
self.generator = None
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
# Update model load state
|
|
self.model_loaded = False
|
|
logger.info("Model unloaded.")
|
|
|
|
def encode_tokens(self, text: str, **kwargs):
|
|
"""Wrapper to encode tokens from a text string"""
|
|
|
|
return (
|
|
self.tokenizer.encode(
|
|
text,
|
|
add_bos=unwrap(kwargs.get("add_bos_token"), True),
|
|
encode_special_tokens=unwrap(kwargs.get("encode_special_tokens"), True),
|
|
)
|
|
.flatten()
|
|
.tolist()
|
|
)
|
|
|
|
def decode_tokens(self, ids: List[int], **kwargs):
|
|
"""Wrapper to decode tokens from a list of IDs"""
|
|
|
|
ids = torch.tensor([ids])
|
|
return self.tokenizer.decode(
|
|
ids,
|
|
decode_special_tokens=unwrap(kwargs.get("decode_special_tokens"), True),
|
|
)[0]
|
|
|
|
def get_special_tokens(self, add_bos_token: bool, ban_eos_token: bool):
|
|
return {
|
|
"bos_token": self.tokenizer.bos_token if add_bos_token else "",
|
|
"eos_token": self.tokenizer.eos_token if not ban_eos_token else "",
|
|
"pad_token": self.tokenizer.pad_token,
|
|
"unk_token": self.tokenizer.unk_token,
|
|
}
|
|
|
|
def get_logprobs(self, token_ids: torch.Tensor, token_probs: torch.Tensor):
|
|
top_tokens = list(
|
|
map(
|
|
lambda index: self.tokenizer.extended_id_to_piece.get(
|
|
index, self.tokenizer.id_to_piece[index]
|
|
),
|
|
token_ids.flatten().tolist(),
|
|
)
|
|
)
|
|
|
|
top_values = torch.log(token_probs).flatten().tolist()
|
|
|
|
# Cannot return -inf in JSON
|
|
cleaned_values = list(
|
|
map(lambda value: -1000 if value == float("-inf") else value, top_values)
|
|
)
|
|
|
|
return dict(zip_longest(top_tokens, cleaned_values))
|
|
|
|
def generate(self, prompt: str, **kwargs):
|
|
"""Generate a response to a prompt"""
|
|
generations = list(self.generate_gen(prompt, **kwargs))
|
|
|
|
joined_generation = {
|
|
"text": "",
|
|
"prompt_tokens": 0,
|
|
"generation_tokens": 0,
|
|
"offset": [],
|
|
"token_probs": {},
|
|
"logprobs": [],
|
|
}
|
|
|
|
if generations:
|
|
for generation in generations:
|
|
joined_generation["text"] += unwrap(generation.get("text"), "")
|
|
joined_generation["offset"].append(unwrap(generation.get("offset"), []))
|
|
joined_generation["token_probs"].update(
|
|
unwrap(generation.get("token_probs"), {})
|
|
)
|
|
|
|
# Include empty logprob dicts for index preservation
|
|
joined_generation["logprobs"].append(
|
|
unwrap(generation.get("logprobs"), {})
|
|
)
|
|
|
|
joined_generation["prompt_tokens"] = unwrap(
|
|
generations[-1].get("prompt_tokens"), 0
|
|
)
|
|
joined_generation["generation_tokens"] = unwrap(
|
|
generations[-1].get("generated_tokens"), 0
|
|
)
|
|
|
|
return joined_generation
|
|
|
|
def check_unsupported_settings(self, **kwargs):
|
|
"""Check and warn the user if a sampler is unsupported. Meant for dev wheels!"""
|
|
|
|
pass
|
|
|
|
# pylint: disable=too-many-locals,too-many-branches,too-many-statements
|
|
def generate_gen(self, prompt: str, **kwargs):
|
|
"""
|
|
Create generator function for prompt completion
|
|
|
|
Args:
|
|
prompt (str): Input prompt
|
|
**kwargs:
|
|
'token_healing' (bool): Use token healing (default: False)
|
|
'temperature' (float): Sampling temperature (default: 1.0)
|
|
'temperature_last' (bool): Apply temperature after all other
|
|
samplers (default: False)
|
|
'top_k' (int): Sampling top-K (default: 0)
|
|
'top_p' (float): Sampling top-P (default: 1.0)
|
|
'min_p' (float): Sampling min-P (default: 0.0)
|
|
'tfs' (float): Tail-free sampling (default: 0.0)
|
|
'typical' (float): Sampling typical (default: 0.0)
|
|
'mirostat' (bool): Use Mirostat (default: False)
|
|
'mirostat_tau' (float) Mirostat tau parameter (default: 1.5)
|
|
'mirostat_eta' (float) Mirostat eta parameter (default: 0.1)
|
|
'frequency_penalty' (float): Token frequency penalty (default: 0.0)
|
|
'presence_penalty' (float): Token presence penalty (default: 0.0)
|
|
'repetition_penalty' (float): Token repetition penalty
|
|
(default: 1.15)
|
|
'penalty_range' (int): Penalty range
|
|
(default: whole context)
|
|
'repetition_decay' (int): Repetition penalty range
|
|
(default: same as range)
|
|
'stop' (List[Union[str, int]]): List of stop strings/tokens to
|
|
end response (default: [EOS])
|
|
'max_tokens' (int): Max no. tokens in response (default: 150)
|
|
'add_bos_token' (bool): Adds the BOS token to the start of the
|
|
prompt (default: True)
|
|
'ban_eos_token' (bool): Bans the EOS token from generation
|
|
(default: False)
|
|
'logit_bias' (Dict[int, float]): Biases specific tokens to
|
|
either show up more or less (default: None)
|
|
'stream_interval' (float): Interval in seconds between each
|
|
output chunk (default: immediate)
|
|
'generate_window' (int): Space to reserve at the end of the
|
|
model's context when generating. Rolls context window by
|
|
the same amount if context length is exceeded to allow
|
|
generating pastthe models max_seq_len.
|
|
"""
|
|
|
|
token_healing = unwrap(kwargs.get("token_healing"), False)
|
|
max_tokens = unwrap(kwargs.get("max_tokens"), 150)
|
|
stream_interval = unwrap(kwargs.get("stream_interval"), 0)
|
|
generate_window = max(
|
|
unwrap(kwargs.get("generate_window"), 512), self.config.max_seq_len // 8
|
|
)
|
|
|
|
# Sampler settings
|
|
gen_settings = ExLlamaV2Sampler.Settings()
|
|
|
|
# Check unsupported settings for dev wheels
|
|
self.check_unsupported_settings(**kwargs)
|
|
|
|
# Apply settings
|
|
gen_settings.temperature = unwrap(kwargs.get("temperature"), 1.0)
|
|
gen_settings.temperature_last = unwrap(kwargs.get("temperature_last"), False)
|
|
gen_settings.smoothing_factor = unwrap(kwargs.get("smoothing_factor"), 0.0)
|
|
gen_settings.top_k = unwrap(kwargs.get("top_k"), 0)
|
|
gen_settings.top_p = unwrap(kwargs.get("top_p"), 1.0)
|
|
gen_settings.top_a = unwrap(kwargs.get("top_a"), 0.0)
|
|
gen_settings.min_p = unwrap(kwargs.get("min_p"), 0.0)
|
|
gen_settings.tfs = unwrap(kwargs.get("tfs"), 1.0)
|
|
gen_settings.typical = unwrap(kwargs.get("typical"), 1.0)
|
|
gen_settings.mirostat = unwrap(kwargs.get("mirostat"), False)
|
|
|
|
# DynaTemp settings
|
|
max_temp = unwrap(kwargs.get("max_temp"), 1.0)
|
|
min_temp = unwrap(kwargs.get("min_temp"), 1.0)
|
|
|
|
if max_temp > min_temp:
|
|
gen_settings.max_temp = max_temp
|
|
gen_settings.min_temp = min_temp
|
|
gen_settings.temp_exponent = unwrap(kwargs.get("temp_exponent"), 1.0)
|
|
else:
|
|
# Force to default values
|
|
gen_settings.max_temp = 1.0
|
|
gen_settings.min_temp = 1.0
|
|
gen_settings.temp_exponent = 1.0
|
|
|
|
# Warn if max/min temp values are > 0
|
|
# and if they're less than or equal to each other
|
|
if max_temp < min_temp or (
|
|
1 not in {min_temp, max_temp} and max_temp == min_temp
|
|
):
|
|
logger.warning(
|
|
"Max temp is less than or equal to min temp, skipping DynaTemp."
|
|
)
|
|
|
|
# Default tau and eta fallbacks don't matter if mirostat is off
|
|
gen_settings.mirostat_tau = unwrap(kwargs.get("mirostat_tau"), 1.5)
|
|
gen_settings.mirostat_eta = unwrap(kwargs.get("mirostat_eta"), 0.1)
|
|
|
|
# Set CFG scale and negative prompt
|
|
cfg_scale = unwrap(kwargs.get("cfg_scale"), 1.0)
|
|
negative_prompt = None
|
|
if cfg_scale not in [None, 1.0]:
|
|
if self.use_cfg:
|
|
gen_settings.cfg_scale = cfg_scale
|
|
|
|
# If the negative prompt is empty, use the BOS token
|
|
negative_prompt = unwrap(
|
|
kwargs.get("negative_prompt"), self.tokenizer.bos_token
|
|
)
|
|
else:
|
|
logger.warn(
|
|
"CFG is currently disabled. "
|
|
"Please reload your model with use_cfg = True.",
|
|
)
|
|
|
|
gen_settings.token_repetition_penalty = unwrap(
|
|
kwargs.get("repetition_penalty"), 1.0
|
|
)
|
|
gen_settings.token_frequency_penalty = unwrap(
|
|
kwargs.get("frequency_penalty"), 0.0
|
|
)
|
|
gen_settings.token_presence_penalty = unwrap(
|
|
kwargs.get("presence_penalty"), 0.0
|
|
)
|
|
|
|
# Applies for all penalties despite being called token_repetition_range
|
|
gen_settings.token_repetition_range = unwrap(
|
|
kwargs.get("penalty_range"), self.config.max_seq_len
|
|
)
|
|
|
|
# Dynamically scale penalty range to output tokens
|
|
# Only do this if freq/pres pen is enabled
|
|
# and the repetition range is -1
|
|
auto_scale_penalty_range = (
|
|
gen_settings.token_frequency_penalty != 0
|
|
or gen_settings.token_presence_penalty != 0
|
|
) and gen_settings.token_repetition_range == -1
|
|
|
|
# Always make sure the fallback is 0 if range < 0
|
|
# It's technically fine to use -1, but this just validates the passed
|
|
# fallback
|
|
# Always default to 0 if something goes wrong
|
|
if gen_settings.token_repetition_range < 0:
|
|
fallback_decay = 0
|
|
else:
|
|
fallback_decay = gen_settings.token_repetition_range
|
|
gen_settings.token_repetition_decay = coalesce(
|
|
kwargs.get("repetition_decay"), fallback_decay, 0
|
|
)
|
|
|
|
stop_conditions: List[Union[str, int]] = unwrap(kwargs.get("stop"), [])
|
|
add_bos_token = unwrap(kwargs.get("add_bos_token"), True)
|
|
ban_eos_token = unwrap(kwargs.get("ban_eos_token"), False)
|
|
logit_bias = kwargs.get("logit_bias")
|
|
|
|
# Logprobs
|
|
request_logprobs = unwrap(kwargs.get("logprobs"), 0)
|
|
self.generator.return_top_tokens = request_logprobs
|
|
|
|
# Override sampler settings for temp = 0
|
|
if gen_settings.temperature == 0:
|
|
gen_settings.temperature = 1.0
|
|
gen_settings.top_k = 1
|
|
gen_settings.top_p = 0
|
|
gen_settings.typical = 0
|
|
|
|
# Log generation options to console
|
|
# Some options are too large, so log the args instead
|
|
log_generation_params(
|
|
max_tokens=max_tokens,
|
|
**vars(gen_settings),
|
|
token_healing=token_healing,
|
|
auto_scale_penalty_range=auto_scale_penalty_range,
|
|
generate_window=generate_window,
|
|
add_bos_token=add_bos_token,
|
|
ban_eos_token=ban_eos_token,
|
|
logprobs=request_logprobs,
|
|
stop_conditions=stop_conditions,
|
|
logit_bias=logit_bias,
|
|
)
|
|
|
|
# Log prompt to console
|
|
log_prompt(prompt, negative_prompt)
|
|
|
|
# Set logit bias
|
|
if logit_bias:
|
|
# Create a vocab tensor if it doesn't exist for token biasing
|
|
if gen_settings.token_bias is None:
|
|
padding = -self.tokenizer.config.vocab_size % 32
|
|
gen_settings.token_bias = torch.zeros(
|
|
(self.tokenizer.config.vocab_size + padding,),
|
|
dtype=torch.float,
|
|
)
|
|
|
|
# Map logits to the tensor with their biases
|
|
for token_id, bias in logit_bias.items():
|
|
if 0 <= token_id < len(self.tokenizer.id_to_piece):
|
|
gen_settings.token_bias[token_id] = bias
|
|
else:
|
|
logger.warning(
|
|
f"Logit bias: Token {token_id} not present "
|
|
"in the model's vocab. Skipping."
|
|
)
|
|
|
|
# Initialize grammar handler
|
|
grammar_handler = ExLlamaV2Grammar()
|
|
gen_settings.filters = []
|
|
|
|
# Add JSON schema filter if it exists
|
|
json_schema = unwrap(kwargs.get("json_schema"))
|
|
if json_schema:
|
|
grammar_handler.add_json_schema_filter(
|
|
json_schema, gen_settings, self.model, self.tokenizer
|
|
)
|
|
|
|
# Add EBNF filter if it exists
|
|
grammar_string = unwrap(kwargs.get("grammar_string"))
|
|
if grammar_string:
|
|
grammar_handler.add_ebnf_filter(
|
|
grammar_string, gen_settings, self.model, self.tokenizer
|
|
)
|
|
|
|
# Ban the EOS token if specified. If not, append to stop conditions
|
|
# as well.
|
|
# Set this below logging to avoid polluting the stop strings array
|
|
if ban_eos_token:
|
|
gen_settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id])
|
|
else:
|
|
stop_conditions.append(self.tokenizer.eos_token_id)
|
|
|
|
# Stop conditions
|
|
self.generator.set_stop_conditions(stop_conditions)
|
|
|
|
# Tokenized context
|
|
ids, offsets = self.tokenizer.encode(
|
|
[prompt, negative_prompt]
|
|
if negative_prompt and gen_settings.cfg_scale not in [None, 1.0]
|
|
else prompt,
|
|
add_bos=add_bos_token,
|
|
encode_special_tokens=True,
|
|
return_offsets=True,
|
|
)
|
|
mask = (
|
|
self.tokenizer.padding_mask(ids)
|
|
if self.use_cfg and gen_settings.cfg_scale not in [None, 1.0]
|
|
else None
|
|
)
|
|
context_len = len(ids[0])
|
|
|
|
if context_len > self.config.max_seq_len:
|
|
logger.warning(
|
|
f"Context length {context_len} is greater than max_seq_len "
|
|
f"{self.config.max_seq_len}. Generation is truncated and "
|
|
"metrics may not be accurate."
|
|
)
|
|
|
|
prompt_tokens = ids.shape[-1]
|
|
|
|
# Begin
|
|
generated_tokens = 0
|
|
full_response = ""
|
|
start_time = time.time()
|
|
last_chunk_time = start_time
|
|
|
|
save_tokens = torch.empty((ids.shape[0], 0), dtype=torch.bool)
|
|
chunk_buffer = ""
|
|
chunk_tokens = 0
|
|
|
|
while True:
|
|
# Ingest prompt
|
|
if chunk_tokens == 0:
|
|
ids = torch.cat((ids, save_tokens), dim=-1)
|
|
save_tokens = torch.empty((ids.shape[0], 0), dtype=torch.bool)
|
|
overflow = ids.shape[-1] + generate_window - self.config.max_seq_len
|
|
active_ids = ids[:, max(0, overflow) :]
|
|
chunk_tokens = self.config.max_seq_len - active_ids.shape[-1]
|
|
|
|
# Split for exllama versions that have CFG
|
|
if self.use_cfg:
|
|
self.generator.begin_stream(
|
|
active_ids,
|
|
gen_settings,
|
|
token_healing=token_healing,
|
|
loras=self.active_loras,
|
|
input_mask=mask,
|
|
position_offsets=offsets,
|
|
)
|
|
else:
|
|
self.generator.begin_stream(
|
|
active_ids,
|
|
gen_settings,
|
|
token_healing=token_healing,
|
|
loras=self.active_loras,
|
|
)
|
|
|
|
# Reset offsets for subsequent passes if the context is truncated
|
|
offsets = None
|
|
|
|
if auto_scale_penalty_range:
|
|
gen_settings.token_repetition_range = generated_tokens
|
|
|
|
# Run dict generation
|
|
# Guarantees return of chunk, eos, and chunk_token_ids
|
|
raw_generation = self.generator.stream_ex()
|
|
|
|
if token_healing:
|
|
# Extract healed token
|
|
ids[:, -1] = self.generator.sequence_ids[:, -2]
|
|
token_healing = False
|
|
|
|
# Get parameters that will always exist
|
|
chunk = raw_generation["chunk"]
|
|
eos = raw_generation["eos"]
|
|
tokens = raw_generation["chunk_token_ids"]
|
|
|
|
save_tokens = torch.cat(
|
|
(save_tokens, tokens.expand(save_tokens.shape[0], -1)), dim=-1
|
|
)
|
|
chunk_buffer += chunk
|
|
|
|
generated_tokens += 1
|
|
chunk_tokens -= 1
|
|
|
|
# Yield output
|
|
now = time.time()
|
|
elapsed = now - last_chunk_time
|
|
|
|
if chunk_buffer != "" and (
|
|
elapsed > stream_interval or eos or generated_tokens == max_tokens
|
|
):
|
|
generation = {
|
|
"text": chunk_buffer,
|
|
"prompt_tokens": prompt_tokens,
|
|
"generated_tokens": generated_tokens,
|
|
"offset": len(full_response),
|
|
}
|
|
|
|
if request_logprobs > 0:
|
|
# Get top tokens and probs
|
|
top_tokens = unwrap(
|
|
raw_generation.get("top_tokens"),
|
|
torch.empty((1, 0, 1), dtype=torch.long),
|
|
)
|
|
|
|
top_probs = unwrap(
|
|
raw_generation.get("top_probs"),
|
|
torch.empty((1, 0, 1), dtype=torch.float),
|
|
)
|
|
|
|
if top_tokens.numel() > 0 and top_probs.numel() > 0:
|
|
logprobs = self.get_logprobs(top_tokens, top_probs)
|
|
generation["logprobs"] = logprobs
|
|
|
|
# The first logprob is the selected token prob
|
|
generation["token_probs"] = {
|
|
token: logprobs[token]
|
|
for token in list(logprobs.keys())[:1]
|
|
}
|
|
|
|
yield generation
|
|
full_response += chunk_buffer
|
|
chunk_buffer = ""
|
|
last_chunk_time = now
|
|
|
|
if eos or generated_tokens == max_tokens:
|
|
break
|
|
|
|
# Print response
|
|
log_response(full_response)
|
|
|
|
elapsed_time = last_chunk_time - start_time
|
|
|
|
initial_response = (
|
|
f"Metrics: {generated_tokens} tokens generated in "
|
|
f"{round(elapsed_time, 2)} seconds"
|
|
)
|
|
itemization = []
|
|
extra_parts = []
|
|
|
|
# Add tokens per second
|
|
tokens_per_second = (
|
|
"Indeterminate"
|
|
if elapsed_time == 0
|
|
else round(generated_tokens / elapsed_time, 2)
|
|
)
|
|
itemization.append(f"{tokens_per_second} T/s")
|
|
|
|
# Add context (original token count)
|
|
if ids is not None:
|
|
itemization.append(f"context {context_len} tokens")
|
|
|
|
if context_len > self.config.max_seq_len:
|
|
extra_parts.append("<-- Not accurate (truncated)")
|
|
|
|
# Print output
|
|
logger.info(
|
|
initial_response
|
|
+ " ("
|
|
+ ", ".join(itemization)
|
|
+ ") "
|
|
+ " ".join(extra_parts)
|
|
)
|