248 lines
9.7 KiB
Python
248 lines
9.7 KiB
Python
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
|
from typing import List, Optional, Union
|
|
|
|
from common.utils import unwrap
|
|
|
|
|
|
class config_config_model(BaseModel):
|
|
config: Optional[str] = Field(
|
|
None, description="Path to an overriding config.yml file"
|
|
)
|
|
|
|
|
|
class network_config_model(BaseModel):
|
|
host: Optional[str] = Field("127.0.0.1", description="The IP to host on")
|
|
port: Optional[int] = Field(5000, description="The port to host on")
|
|
disable_auth: Optional[bool] = Field(
|
|
False, description="Disable HTTP token authentication with requests"
|
|
)
|
|
send_tracebacks: Optional[bool] = Field(
|
|
False, description="Decide whether to send error tracebacks over the API"
|
|
)
|
|
api_servers: Optional[List[str]] = Field(
|
|
[
|
|
"OAI",
|
|
],
|
|
description="API servers to enable. Options: (OAI, Kobold)",
|
|
)
|
|
|
|
|
|
class logging_config_model(BaseModel):
|
|
log_prompt: Optional[bool] = Field(False, description="Enable prompt logging")
|
|
log_generation_params: Optional[bool] = Field(
|
|
False, description="Enable generation parameter logging"
|
|
)
|
|
log_requests: Optional[bool] = Field(False, description="Enable request logging")
|
|
|
|
|
|
class model_config_model(BaseModel):
|
|
model_dir: str = Field(
|
|
"models",
|
|
description="Overrides the directory to look for models (default: models). Windows users, do NOT put this path in quotes.",
|
|
)
|
|
use_dummy_models: Optional[bool] = Field(
|
|
False,
|
|
description="Sends dummy model names when the models endpoint is queried. Enable this if looking for specific OAI models.",
|
|
)
|
|
model_name: Optional[str] = Field(
|
|
None,
|
|
description="An initial model to load. Make sure the model is located in the model directory! REQUIRED: This must be filled out to load a model on startup.",
|
|
)
|
|
use_as_default: List[str] = Field(
|
|
default_factory=list,
|
|
description="Names of args to use as a default fallback for API load requests (default: []). Example: ['max_seq_len', 'cache_mode']",
|
|
)
|
|
max_seq_len: Optional[int] = Field(
|
|
None,
|
|
description="Max sequence length. Fetched from the model's base sequence length in config.json by default.",
|
|
)
|
|
override_base_seq_len: Optional[int] = Field(
|
|
None,
|
|
description="Overrides base model context length. WARNING: Only use this if the model's base sequence length is incorrect.",
|
|
)
|
|
tensor_parallel: Optional[bool] = Field(
|
|
False,
|
|
description="Load model with tensor parallelism. Fallback to autosplit if GPU split isn't provided.",
|
|
)
|
|
gpu_split_auto: Optional[bool] = Field(
|
|
True,
|
|
description="Automatically allocate resources to GPUs (default: True). Not parsed for single GPU users.",
|
|
)
|
|
autosplit_reserve: List[int] = Field(
|
|
[96],
|
|
description="Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0). Represented as an array of MB per GPU.",
|
|
)
|
|
gpu_split: List[float] = Field(
|
|
default_factory=list,
|
|
description="An integer array of GBs of VRAM to split between GPUs (default: []). Used with tensor parallelism.",
|
|
)
|
|
rope_scale: Optional[float] = Field(
|
|
1.0,
|
|
description="Rope scale (default: 1.0). Same as compress_pos_emb. Only use if the model was trained on long context with rope.",
|
|
)
|
|
rope_alpha: Optional[Union[float, str]] = Field(
|
|
1.0,
|
|
description="Rope alpha (default: 1.0). Same as alpha_value. Set to 'auto' to auto-calculate.",
|
|
)
|
|
cache_mode: Optional[str] = Field(
|
|
"FP16",
|
|
description="Enable different cache modes for VRAM savings (default: FP16). Possible values: FP16, Q8, Q6, Q4.",
|
|
)
|
|
cache_size: Optional[int] = Field(
|
|
None,
|
|
description="Size of the prompt cache to allocate (default: max_seq_len). Must be a multiple of 256.",
|
|
)
|
|
chunk_size: Optional[int] = Field(
|
|
2048,
|
|
description="Chunk size for prompt ingestion (default: 2048). A lower value reduces VRAM usage but decreases ingestion speed.",
|
|
)
|
|
max_batch_size: Optional[int] = Field(
|
|
None,
|
|
description="Set the maximum number of prompts to process at one time (default: None/Automatic). Automatically calculated if left blank.",
|
|
)
|
|
prompt_template: Optional[str] = Field(
|
|
None,
|
|
description="Set the prompt template for this model. If empty, attempts to look for the model's chat template.",
|
|
)
|
|
num_experts_per_token: Optional[int] = Field(
|
|
None,
|
|
description="Number of experts to use per token. Fetched from the model's config.json. For MoE models only.",
|
|
)
|
|
fasttensors: Optional[bool] = Field(
|
|
False,
|
|
description="Enables fasttensors to possibly increase model loading speeds (default: False).",
|
|
)
|
|
|
|
|
|
class draft_model_config_model(BaseModel):
|
|
draft_model_dir: Optional[str] = Field(
|
|
"models",
|
|
description="Overrides the directory to look for draft models (default: models)",
|
|
)
|
|
draft_model_name: Optional[str] = Field(
|
|
None,
|
|
description="An initial draft model to load. Ensure the model is in the model directory.",
|
|
)
|
|
draft_rope_scale: Optional[float] = Field(
|
|
1.0,
|
|
description="Rope scale for draft models (default: 1.0). Same as compress_pos_emb. Use if the draft model was trained on long context with rope.",
|
|
)
|
|
draft_rope_alpha: Optional[float] = Field(
|
|
None,
|
|
description="Rope alpha for draft models (default: None). Same as alpha_value. Leave blank to auto-calculate the alpha value.",
|
|
)
|
|
draft_cache_mode: Optional[str] = Field(
|
|
"FP16",
|
|
description="Cache mode for draft models to save VRAM (default: FP16). Possible values: FP16, Q8, Q6, Q4.",
|
|
)
|
|
|
|
|
|
class lora_instance_model(BaseModel):
|
|
name: str = Field(..., description="Name of the LoRA model")
|
|
scaling: float = Field(
|
|
1.0, description="Scaling factor for the LoRA model (default: 1.0)"
|
|
)
|
|
|
|
|
|
class lora_config_model(BaseModel):
|
|
lora_dir: Optional[str] = Field(
|
|
"loras", description="Directory to look for LoRAs (default: 'loras')"
|
|
)
|
|
loras: Optional[List[lora_instance_model]] = Field(
|
|
None,
|
|
description="List of LoRAs to load and associated scaling factors (default scaling: 1.0)",
|
|
)
|
|
|
|
|
|
class sampling_config_model(BaseModel):
|
|
override_preset: Optional[str] = Field(
|
|
None, description="Select a sampler override preset"
|
|
)
|
|
|
|
|
|
class developer_config_model(BaseModel):
|
|
unsafe_launch: Optional[bool] = Field(
|
|
False, description="Skip Exllamav2 version check"
|
|
)
|
|
disable_request_streaming: Optional[bool] = Field(
|
|
False, description="Disables API request streaming"
|
|
)
|
|
cuda_malloc_backend: Optional[bool] = Field(
|
|
False, description="Runs with the pytorch CUDA malloc backend"
|
|
)
|
|
uvloop: Optional[bool] = Field(
|
|
False, description="Run asyncio using Uvloop or Winloop"
|
|
)
|
|
realtime_process_priority: Optional[bool] = Field(
|
|
False,
|
|
description="Set process to use a higher priority For realtime process priority, run as administrator or sudo Otherwise, the priority will be set to high",
|
|
)
|
|
|
|
|
|
class embeddings_config_model(BaseModel):
|
|
embedding_model_dir: Optional[str] = Field(
|
|
"models",
|
|
description="Overrides directory to look for embedding models (default: models)",
|
|
)
|
|
embeddings_device: Optional[str] = Field(
|
|
"cpu",
|
|
description="Device to load embedding models on (default: cpu). Possible values: cpu, auto, cuda. If using an AMD GPU, set this value to 'cuda'.",
|
|
)
|
|
embedding_model_name: Optional[str] = Field(
|
|
None, description="The embeddings model to load"
|
|
)
|
|
|
|
|
|
class tabby_config_model(BaseModel):
|
|
config: config_config_model = Field(default_factory=config_config_model)
|
|
network: network_config_model = Field(default_factory=network_config_model)
|
|
logging: logging_config_model = Field(default_factory=logging_config_model)
|
|
model: model_config_model = Field(default_factory=model_config_model)
|
|
draft_model: draft_model_config_model = Field(
|
|
default_factory=draft_model_config_model
|
|
)
|
|
lora: lora_config_model = Field(default_factory=lora_config_model)
|
|
sampling: sampling_config_model = Field(default_factory=sampling_config_model)
|
|
developer: developer_config_model = Field(default_factory=developer_config_model)
|
|
embeddings: embeddings_config_model = Field(default_factory=embeddings_config_model)
|
|
|
|
@model_validator(mode="before")
|
|
def set_defaults(cls, values):
|
|
for field_name, field_value in values.items():
|
|
if field_value is None:
|
|
default_instance = cls.__annotations__[field_name]().dict()
|
|
values[field_name] = cls.__annotations__[field_name](**default_instance)
|
|
return values
|
|
|
|
model_config = ConfigDict(validate_assignment=True)
|
|
|
|
|
|
def generate_config_file(filename="config_sample.yml", indentation=2):
|
|
schema = tabby_config_model.model_json_schema()
|
|
|
|
def dump_def(id: str, indent=2):
|
|
yaml = ""
|
|
indent = " " * indentation * indent
|
|
id = id.split("/")[-1]
|
|
|
|
section = schema["$defs"][id]["properties"]
|
|
for property in section.keys(): # get type
|
|
comment = section[property]["description"]
|
|
yaml += f"{indent}# {comment}\n"
|
|
|
|
value = unwrap(section[property].get("default"), "")
|
|
yaml += f"{indent}{property}: {value}\n\n"
|
|
|
|
return yaml + "\n"
|
|
|
|
yaml = ""
|
|
for section in schema["properties"].keys():
|
|
yaml += f"{section}:\n"
|
|
yaml += dump_def(schema["properties"][section]["$ref"])
|
|
yaml += "\n"
|
|
|
|
with open(filename, "w") as f:
|
|
f.write(yaml)
|
|
|
|
|
|
# generate_config_file("test.yml")
|