CFG, or classifier-free guidance helps push a model in different directions based on what the user provides. Currently, CFG is ignored if the negative prompt is blank (it shouldn't be used in that way anyways). Signed-off-by: kingbri <bdashore3@proton.me>
125 lines
4.2 KiB
Python
125 lines
4.2 KiB
Python
""" Common types for OAI. """
|
|
from pydantic import BaseModel, Field, AliasChoices
|
|
from typing import List, Dict, Optional, Union
|
|
|
|
|
|
class LogProbs(BaseModel):
|
|
"""Represents log probabilities."""
|
|
|
|
text_offset: List[int] = Field(default_factory=list)
|
|
token_logprobs: List[float] = Field(default_factory=list)
|
|
tokens: List[str] = Field(default_factory=list)
|
|
top_logprobs: List[Dict[str, float]] = Field(default_factory=list)
|
|
|
|
|
|
class UsageStats(BaseModel):
|
|
"""Represents usage stats."""
|
|
|
|
prompt_tokens: int
|
|
completion_tokens: int
|
|
total_tokens: int
|
|
|
|
|
|
class CommonCompletionRequest(BaseModel):
|
|
"""Represents a common completion request."""
|
|
|
|
# Model information
|
|
# This parameter is not used, the loaded model is used instead
|
|
model: Optional[str] = None
|
|
|
|
# Extra OAI request stuff
|
|
best_of: Optional[int] = Field(
|
|
description="Not parsed. Only used for OAI compliance.", default=None
|
|
)
|
|
echo: Optional[bool] = Field(
|
|
description="Not parsed. Only used for OAI compliance.", default=False
|
|
)
|
|
logprobs: Optional[int] = Field(
|
|
description="Not parsed. Only used for OAI compliance.", default=None
|
|
)
|
|
n: Optional[int] = Field(
|
|
description="Not parsed. Only used for OAI compliance.", default=1
|
|
)
|
|
suffix: Optional[str] = Field(
|
|
description="Not parsed. Only used for OAI compliance.", default=None
|
|
)
|
|
user: Optional[str] = Field(
|
|
description="Not parsed. Only used for OAI compliance.", default=None
|
|
)
|
|
|
|
# Generation info
|
|
# seed: Optional[int] = -1
|
|
stream: Optional[bool] = False
|
|
stop: Optional[Union[str, List[str]]] = []
|
|
|
|
# Default to 150 as 16 makes no sense as a default
|
|
max_tokens: Optional[int] = 150
|
|
|
|
# Sampling params
|
|
token_healing: Optional[bool] = False
|
|
temperature: Optional[float] = 1.0
|
|
temperature_last: Optional[bool] = False
|
|
top_k: Optional[int] = 0
|
|
top_p: Optional[float] = 1.0
|
|
top_a: Optional[float] = 0.0
|
|
typical: Optional[float] = 1.0
|
|
min_p: Optional[float] = 0.0
|
|
tfs: Optional[float] = 1.0
|
|
frequency_penalty: Optional[float] = 0.0
|
|
presence_penalty: Optional[float] = 0.0
|
|
repetition_penalty: Optional[float] = 1.0
|
|
repetition_decay: Optional[int] = 0
|
|
mirostat_mode: Optional[int] = 0
|
|
mirostat_tau: Optional[float] = 1.5
|
|
mirostat_eta: Optional[float] = 0.1
|
|
add_bos_token: Optional[bool] = True
|
|
ban_eos_token: Optional[bool] = False
|
|
logit_bias: Optional[Dict[int, float]] = Field(default=None, examples=[[{"1": 10}]])
|
|
negative_prompt: Optional[str] = None
|
|
|
|
# Aliased variables
|
|
penalty_range: Optional[int] = Field(
|
|
default=-1,
|
|
validation_alias=AliasChoices(
|
|
"penalty_range",
|
|
"repetition_range",
|
|
"repetition_penalty_range",
|
|
),
|
|
)
|
|
|
|
cfg_scale: Optional[float] = Field(
|
|
default=1.0, validation_alias=AliasChoices("cfg_scale", "guidance_scale")
|
|
)
|
|
|
|
def to_gen_params(self):
|
|
"""Converts to internal generation parameters."""
|
|
# Convert stop to an array of strings
|
|
if isinstance(self.stop, str):
|
|
self.stop = [self.stop]
|
|
|
|
return {
|
|
"stop": self.stop,
|
|
"max_tokens": self.max_tokens,
|
|
"add_bos_token": self.add_bos_token,
|
|
"ban_eos_token": self.ban_eos_token,
|
|
"token_healing": self.token_healing,
|
|
"logit_bias": self.logit_bias,
|
|
"temperature": self.temperature,
|
|
"temperature_last": self.temperature_last,
|
|
"top_k": self.top_k,
|
|
"top_p": self.top_p,
|
|
"top_a": self.top_a,
|
|
"typical": self.typical,
|
|
"min_p": self.min_p,
|
|
"tfs": self.tfs,
|
|
"frequency_penalty": self.frequency_penalty,
|
|
"presence_penalty": self.presence_penalty,
|
|
"repetition_penalty": self.repetition_penalty,
|
|
"penalty_range": self.penalty_range,
|
|
"repetition_decay": self.repetition_decay,
|
|
"mirostat": self.mirostat_mode == 2,
|
|
"mirostat_tau": self.mirostat_tau,
|
|
"mirostat_eta": self.mirostat_eta,
|
|
"cfg_scale": self.cfg_scale,
|
|
"negative_prompt": self.negative_prompt,
|
|
}
|