144 lines
No EOL
4.4 KiB
Python
144 lines
No EOL
4.4 KiB
Python
import traceback
|
|
from exllamav2 import ExLlamaV2, ExLlamaV2Tokenizer
|
|
from exllamav2.generator.filters import ExLlamaV2Filter, ExLlamaV2PrefixFilter
|
|
from lmformatenforcer import JsonSchemaParser, RegexParser
|
|
from lmformatenforcer.integrations.exllamav2 import ExLlamaV2TokenEnforcerFilter, build_token_enforcer_tokenizer_data
|
|
from loguru import logger
|
|
from typing import List
|
|
from functools import lru_cache
|
|
|
|
|
|
class OutlinesTokenizerWrapper:
|
|
"""Wrapper for Outlines tokenizer"""
|
|
|
|
def __init__(self, tokenizer):
|
|
self.tokenizer = tokenizer
|
|
id_to_piece = self.tokenizer.get_id_to_piece_list()
|
|
self.vocabulary = {piece: idx for idx, piece in enumerate(id_to_piece)}
|
|
self.eos_token_id = self.tokenizer.eos_token_id
|
|
self.eos_token = id_to_piece[self.tokenizer.eos_token_id]
|
|
self.special_tokens = list(self.tokenizer.extended_id_to_piece.keys())
|
|
|
|
def convert_token_to_string(self, token):
|
|
return token
|
|
|
|
def decode(self, tokens):
|
|
s = ""
|
|
id_to_piece = self.tokenizer.get_id_to_piece_list()
|
|
for t in tokens:
|
|
s += id_to_piece[t]
|
|
return s
|
|
|
|
|
|
class ExLlamaV2EbnfFilter(ExLlamaV2Filter):
|
|
"""Filter class for context-free grammar via outlines"""
|
|
|
|
def __init__(self, model, tokenizer, grammar):
|
|
from outlines.fsm.fsm import CFGFSM
|
|
|
|
super().__init__(model, tokenizer)
|
|
|
|
self.wrapped_tokenizer = OutlinesTokenizerWrapper(tokenizer)
|
|
self.fsm = CFGFSM(grammar, self.wrapped_tokenizer)
|
|
self.state = self.fsm.first_state
|
|
|
|
def begin(self, prefix_str=""):
|
|
self.state = self.fsm.first_state
|
|
|
|
def feed(self, token):
|
|
self.state = self.fsm.next_state(self.state, token.item())
|
|
|
|
def next(self):
|
|
return self.fsm.allowed_token_ids(self.state), set()
|
|
|
|
|
|
@lru_cache(10)
|
|
def _get_lmfe_tokenizer_data(tokenizer: ExLlamaV2Tokenizer):
|
|
return build_token_enforcer_tokenizer_data(tokenizer)
|
|
|
|
|
|
class ExLlamaV2Grammar:
|
|
"""ExLlamaV2 class for various grammar filters/parsers."""
|
|
|
|
filters: List[ExLlamaV2Filter]
|
|
|
|
def __init__(self):
|
|
self.filters = []
|
|
|
|
def add_json_schema_filter(
|
|
self,
|
|
json_schema: dict,
|
|
model: ExLlamaV2,
|
|
tokenizer: ExLlamaV2Tokenizer,
|
|
):
|
|
"""Adds an ExllamaV2 filter based on a JSON schema."""
|
|
|
|
# Create the parser
|
|
try:
|
|
schema_parser = JsonSchemaParser(json_schema)
|
|
except Exception:
|
|
traceback.print_exc()
|
|
logger.error(
|
|
"Skipping because the JSON schema couldn't be parsed. "
|
|
"Please read the above error for more information."
|
|
)
|
|
|
|
return
|
|
|
|
# Allow JSON objects or JSON arrays at the top level
|
|
json_prefixes = ["[", "{"]
|
|
|
|
lmfilter = ExLlamaV2TokenEnforcerFilter(schema_parser, _get_lmfe_tokenizer_data(tokenizer))
|
|
prefix_filter = ExLlamaV2PrefixFilter(model, tokenizer, json_prefixes)
|
|
|
|
# Append the filters
|
|
self.filters.extend([lmfilter, prefix_filter])
|
|
|
|
def add_regex_filter(
|
|
self,
|
|
pattern: str,
|
|
tokenizer: ExLlamaV2Tokenizer,
|
|
):
|
|
"""Adds an ExllamaV2 filter based on regular expressions."""
|
|
|
|
# Create the parser
|
|
try:
|
|
pattern_parser = RegexParser(pattern)
|
|
except Exception:
|
|
traceback.print_exc()
|
|
logger.error(
|
|
"Skipping because the regex pattern couldn't be parsed. "
|
|
"Please read the above error for more information."
|
|
)
|
|
|
|
return
|
|
|
|
lmfilter = ExLlamaV2TokenEnforcerFilter(pattern_parser, _get_lmfe_tokenizer_data(tokenizer))
|
|
|
|
# Append the filters
|
|
self.filters.append(lmfilter)
|
|
|
|
def add_ebnf_filter(
|
|
self,
|
|
ebnf_string: str,
|
|
model: ExLlamaV2,
|
|
tokenizer: ExLlamaV2Tokenizer,
|
|
):
|
|
"""
|
|
Add an EBNF grammar filter.
|
|
Possibly replace outlines with an in-house solution in the future.
|
|
"""
|
|
|
|
try:
|
|
ebnf_filter = ExLlamaV2EbnfFilter(model, tokenizer, ebnf_string)
|
|
except ImportError:
|
|
logger.error(
|
|
"Skipping EBNF parsing because Outlines is not installed.\n"
|
|
"Please run the following command in your environment "
|
|
"to install extra packages:\n"
|
|
"pip install -U .[extras]"
|
|
)
|
|
|
|
return
|
|
|
|
self.filters.append(ebnf_filter) |