tabbyAPI-ollama/common/config_models.py
kingbri b6dd21f737 Config: Handle default factories in config generation
Signed-off-by: kingbri <bdashore3@proton.me>
2024-09-16 00:55:46 -04:00

526 lines
18 KiB
Python

from inspect import getdoc
from pathlib import Path
from pydantic import BaseModel, ConfigDict, Field, PrivateAttr
from textwrap import dedent
from typing import List, Literal, Optional, Union
from pydantic_core import PydanticUndefined
CACHE_SIZES = Literal["FP16", "Q8", "Q6", "Q4"]
class Metadata(BaseModel):
"""metadata model for config options"""
include_in_config: Optional[bool] = Field(True)
class BaseConfigModel(BaseModel):
"""Base model for config models with added metadata"""
_metadata: Metadata = PrivateAttr(Metadata())
class ConfigOverrideConfig(BaseConfigModel):
"""Model for overriding a provided config file."""
# TODO: convert this to a pathlib.path?
config: Optional[str] = Field(
None, description=("Path to an overriding config.yml file")
)
_metadata: Metadata = PrivateAttr(Metadata(include_in_config=False))
class UtilityActions(BaseConfigModel):
"""Model used for arg actions."""
# YAML export options
export_config: Optional[str] = Field(
None, description="generate a template config file"
)
config_export_path: Optional[Path] = Field(
"config_sample.yml", description="path to export configuration file to"
)
# OpenAPI JSON export options
export_openapi: Optional[bool] = Field(
False, description="export openapi schema files"
)
openapi_export_path: Optional[Path] = Field(
"openapi.json", description="path to export openapi schema to"
)
_metadata: Metadata = PrivateAttr(Metadata(include_in_config=False))
class NetworkConfig(BaseConfigModel):
"""Options for networking"""
host: Optional[str] = Field(
"127.0.0.1",
description=(
"The IP to host on (default: 127.0.0.1).\n"
"Use 0.0.0.0 to expose on all network adapters."
),
)
port: Optional[int] = Field(
5000, description=("The port to host on (default: 5000).")
)
disable_auth: Optional[bool] = Field(
False,
description=(
"Disable HTTP token authentication with requests.\n"
"WARNING: This will make your instance vulnerable!\n"
"Turn on this option if you are ONLY connecting from localhost."
),
)
send_tracebacks: Optional[bool] = Field(
False,
description=(
"Send tracebacks over the API (default: False).\n"
"NOTE: Only enable this for debug purposes."
),
)
api_servers: Optional[List[Literal["OAI", "Kobold"]]] = Field(
default_factory=list,
description=(
'Select API servers to enable (default: ["OAI"]).\n'
"Possible values: OAI, Kobold."
),
)
# TODO: Migrate config.yml to have the log_ prefix
# This is a breaking change.
class LoggingConfig(BaseConfigModel):
"""Options for logging"""
log_prompt: Optional[bool] = Field(
False,
description=("Enable prompt logging (default: False)."),
)
log_generation_params: Optional[bool] = Field(
False,
description=("Enable generation parameter logging (default: False)."),
)
log_requests: Optional[bool] = Field(
False,
description=(
"Enable request logging (default: False).\n"
"NOTE: Only use this for debugging!"
),
)
class ModelConfig(BaseConfigModel):
"""
Options for model overrides and loading
Please read the comments to understand how arguments are handled
between initial and API loads
"""
# TODO: convert this to a pathlib.path?
model_dir: str = Field(
"models",
description=(
"Directory to look for models (default: models).\n"
"Windows users, do NOT put this path in quotes!"
),
)
inline_model_loading: Optional[bool] = Field(
True,
description=(
"Allow direct loading of models "
"from a completion or chat completion request (default: False)."
),
)
use_dummy_models: Optional[bool] = Field(
False,
description=(
"Sends dummy model names when the models endpoint is queried.\n"
"Enable this if the client is looking for specific OAI models."
),
)
model_name: Optional[str] = Field(
None,
description=(
"An initial model to load.\n"
"Make sure the model is located in the model directory!\n"
"REQUIRED: This must be filled out to load a model on startup."
),
)
use_as_default: List[str] = Field(
default_factory=list,
description=(
"Names of args to use as a fallback for API load requests (default: []).\n"
"For example, if you always want cache_mode to be Q4 "
'instead of on the inital model load, add "cache_mode" to this array.\n'
"Example: ['max_seq_len', 'cache_mode']."
),
)
max_seq_len: Optional[int] = Field(
None,
description=(
"Max sequence length (default: Empty).\n"
"Fetched from the model's base sequence length in config.json by default."
),
ge=0,
)
override_base_seq_len: Optional[int] = Field(
None,
description=(
"Overrides base model context length (default: Empty).\n"
"WARNING: Don't set this unless you know what you're doing!\n"
"Again, do NOT use this for configuring context length, "
"use max_seq_len above ^"
),
ge=0,
)
tensor_parallel: Optional[bool] = Field(
False,
description=(
"Load model with tensor parallelism.\n"
"Falls back to autosplit if GPU split isn't provided.\n"
"This ignores the gpu_split_auto value."
),
)
gpu_split_auto: Optional[bool] = Field(
True,
description=(
"Automatically allocate resources to GPUs (default: True).\n"
"Not parsed for single GPU users."
),
)
autosplit_reserve: List[int] = Field(
[96],
description=(
"Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0).\n"
"Represented as an array of MB per GPU."
),
)
gpu_split: List[float] = Field(
default_factory=list,
description=(
"An integer array of GBs of VRAM to split between GPUs (default: []).\n"
"Used with tensor parallelism."
),
)
rope_scale: Optional[float] = Field(
1.0,
description=(
"Rope scale (default: 1.0).\n"
"Same as compress_pos_emb.\n"
"Use if the model was trained on long context with rope.\n"
"Leave blank to pull the value from the model."
),
)
rope_alpha: Optional[Union[float, Literal["auto"]]] = Field(
1.0,
description=(
"Rope alpha (default: 1.0).\n"
'Same as alpha_value. Set to "auto" to auto-calculate.'
),
)
cache_mode: Optional[CACHE_SIZES] = Field(
"FP16",
description=(
"Enable different cache modes for VRAM savings (default: FP16).\n"
f"Possible values: {str(CACHE_SIZES)[15:-1]}."
),
)
cache_size: Optional[int] = Field(
None,
description=(
"Size of the prompt cache to allocate (default: max_seq_len).\n"
"Must be a multiple of 256 and can't be less than max_seq_len.\n"
"For CFG, set this to 2 * max_seq_len."
),
multiple_of=256,
gt=0,
)
chunk_size: Optional[int] = Field(
2048,
description=(
"Chunk size for prompt ingestion (default: 2048).\n"
"A lower value reduces VRAM usage but decreases ingestion speed.\n"
"NOTE: Effects vary depending on the model.\n"
"An ideal value is between 512 and 4096."
),
gt=0,
)
max_batch_size: Optional[int] = Field(
None,
description=(
"Set the maximum number of prompts to process at one time "
"(default: None/Automatic).\n"
"Automatically calculated if left blank.\n"
"NOTE: Only available for Nvidia ampere (30 series) and above GPUs."
),
ge=1,
)
prompt_template: Optional[str] = Field(
None,
description=(
"Set the prompt template for this model. (default: None)\n"
"If empty, attempts to look for the model's chat template.\n"
"If a model contains multiple templates in its tokenizer_config.json,\n"
"set prompt_template to the name of the template you want to use.\n"
"NOTE: Only works with chat completion message lists!"
),
)
num_experts_per_token: Optional[int] = Field(
None,
description=(
"Number of experts to use per token.\n"
"Fetched from the model's config.json if empty.\n"
"NOTE: For MoE models only.\n"
"WARNING: Don't set this unless you know what you're doing!"
),
ge=1,
)
fasttensors: Optional[bool] = Field(
False,
description=(
"Enables fasttensors to possibly increase model loading speeds "
"(default: False)."
),
)
_metadata: Metadata = PrivateAttr(Metadata())
model_config = ConfigDict(protected_namespaces=())
class DraftModelConfig(BaseConfigModel):
"""
Options for draft models (speculative decoding)
This will use more VRAM!
"""
# TODO: convert this to a pathlib.path?
draft_model_dir: Optional[str] = Field(
"models",
description=("Directory to look for draft models (default: models)"),
)
draft_model_name: Optional[str] = Field(
None,
description=(
"An initial draft model to load.\n"
"Ensure the model is in the model directory."
),
)
draft_rope_scale: Optional[float] = Field(
1.0,
description=(
"Rope scale for draft models (default: 1.0).\n"
"Same as compress_pos_emb.\n"
"Use if the draft model was trained on long context with rope."
),
)
draft_rope_alpha: Optional[float] = Field(
None,
description=(
"Rope alpha for draft models (default: None).\n"
'Same as alpha_value. Set to "auto" to auto-calculate.'
),
)
draft_cache_mode: Optional[CACHE_SIZES] = Field(
"FP16",
description=(
"Cache mode for draft models to save VRAM (default: FP16).\n"
f"Possible values: {str(CACHE_SIZES)[15:-1]}."
),
)
class LoraInstanceModel(BaseConfigModel):
"""Model representing an instance of a Lora."""
name: str = Field(..., description=("Name of the LoRA model."))
scaling: float = Field(
1.0,
description=("Scaling factor for the LoRA model (default: 1.0)."),
ge=0,
)
class LoraConfig(BaseConfigModel):
"""Options for Loras"""
# TODO: convert this to a pathlib.path?
lora_dir: Optional[str] = Field(
"loras", description=("Directory to look for LoRAs (default: loras).")
)
loras: Optional[List[LoraInstanceModel]] = Field(
None,
description=(
"List of LoRAs to load and associated scaling factors "
"(default scale: 1.0)."
),
)
class EmbeddingsConfig(BaseConfigModel):
"""
Options for embedding models and loading.
NOTE: Embeddings requires the "extras" feature to be installed
Install it via "pip install .[extras]"
"""
# TODO: convert this to a pathlib.path?
embedding_model_dir: Optional[str] = Field(
"models",
description=("Directory to look for embedding models (default: models)."),
)
embeddings_device: Optional[Literal["cpu", "auto", "cuda"]] = Field(
"cpu",
description=(
"Device to load embedding models on (default: cpu).\n"
"Possible values: cpu, auto, cuda.\n"
"NOTE: It's recommended to load embedding models on the CPU.\n"
"If using an AMD GPU, set this value to 'cuda'."
),
)
embedding_model_name: Optional[str] = Field(
None,
description=("An initial embedding model to load on the infinity backend."),
)
class SamplingConfig(BaseConfigModel):
"""Options for Sampling"""
override_preset: Optional[str] = Field(
None,
description=(
"Select a sampler override preset (default: None).\n"
"Find this in the sampler-overrides folder.\n"
"This overrides default fallbacks for sampler values "
"that are passed to the API."
),
)
class DeveloperConfig(BaseConfigModel):
"""Options for development and experimentation"""
unsafe_launch: Optional[bool] = Field(
False,
description=(
"Skip Exllamav2 version check (default: False).\n"
"WARNING: It's highly recommended to update your dependencies rather "
"than enabling this flag."
),
)
disable_request_streaming: Optional[bool] = Field(
False, description=("Disable API request streaming (default: False).")
)
cuda_malloc_backend: Optional[bool] = Field(
False, description=("Enable the torch CUDA malloc backend (default: False).")
)
uvloop: Optional[bool] = Field(
False,
description=(
"Run asyncio using Uvloop or Winloop which can improve performance.\n"
"NOTE: It's recommended to enable this, but if something breaks "
"turn this off."
),
)
realtime_process_priority: Optional[bool] = Field(
False,
description=(
"Set process to use a higher priority.\n"
"For realtime process priority, run as administrator or sudo.\n"
"Otherwise, the priority will be set to high."
),
)
class TabbyConfigModel(BaseModel):
"""Base model for a TabbyConfig."""
config: ConfigOverrideConfig = Field(
default_factory=ConfigOverrideConfig.model_construct
)
network: NetworkConfig = Field(default_factory=NetworkConfig.model_construct)
logging: LoggingConfig = Field(default_factory=LoggingConfig.model_construct)
model: ModelConfig = Field(default_factory=ModelConfig.model_construct)
draft_model: DraftModelConfig = Field(
default_factory=DraftModelConfig.model_construct
)
lora: LoraConfig = Field(default_factory=LoraConfig.model_construct)
embeddings: EmbeddingsConfig = Field(
default_factory=EmbeddingsConfig.model_construct
)
sampling: SamplingConfig = Field(default_factory=SamplingConfig.model_construct)
developer: DeveloperConfig = Field(default_factory=DeveloperConfig.model_construct)
actions: UtilityActions = Field(default_factory=UtilityActions.model_construct)
model_config = ConfigDict(validate_assignment=True, protected_namespaces=())
# TODO: Possibly switch to ruamel.yaml for a more native implementation
def generate_config_file(
model: BaseConfigModel = None,
filename: str = "config_sample.yml",
indentation: int = 2,
) -> None:
"""Creates a config.yml file from Pydantic models."""
# Add a preamble
yaml = dedent("""
# Sample YAML file for configuration.
# Comment and uncomment values as needed.
# Every value has a default within the application.
# This file serves to be a drop in for config.yml
# Unless specified in the comments, DO NOT put these options in quotes!
# You can use https://www.yamllint.com/ if you want to check your YAML formatting.\n
""")
schema = model if model else TabbyConfigModel()
# TODO: Make the disordered iteration look cleaner
iter_once = False
for field, field_data in schema.model_fields.items():
subfield_model = field_data.default_factory()
if not subfield_model._metadata.include_in_config:
continue
# Since the list is out of order with the length
# Add newlines from the beginning once one iteration finishes
# This is a sanity check for formatting
if iter_once:
yaml += "\n"
else:
iter_once = True
for line in getdoc(subfield_model).splitlines():
yaml += f"# {line}\n"
yaml += f"{field}:\n"
sub_iter_once = False
for subfield, subfield_data in subfield_model.model_fields.items():
# Same logic as iter_once
if sub_iter_once:
yaml += "\n"
else:
sub_iter_once = True
if subfield_data.default_factory:
value = subfield_data.default_factory()
else:
value = subfield_data.default
value = value if value is not None else ""
value = value if value is not PydanticUndefined else ""
for line in subfield_data.description.splitlines():
yaml += f"{' ' * indentation}# {line}\n"
yaml += f"{' ' * indentation}{subfield}: {value}\n"
with open(filename, "w") as f:
f.write(yaml)