tabbyAPI-ollama/backends/base_model_container.py
kingbri aa657fa6e9 API: Ignore add_bos_token in chat completions
When fetching special tokens from the model, don't factor in the
add_bos_token and ban_eos_token parameters as switches.

In addition, change the internal handling of add_bos_token to an optional
boolean. This allows us to fallback to the model when selecting whether
or not to add the BOS token, especially for chat completions.

Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
2025-05-01 22:51:15 -04:00

244 lines
6.7 KiB
Python

import abc
import asyncio
import pathlib
from loguru import logger
from typing import (
Any,
AsyncIterator,
Dict,
List,
Optional,
)
from common.multimodal import MultimodalEmbeddingWrapper
from common.sampling import BaseSamplerRequest
from common.templating import PromptTemplate
from common.transformers_utils import GenerationConfig
from endpoints.core.types.model import ModelCard
class BaseModelContainer(abc.ABC):
"""Abstract base class for model containers."""
# Exposed model information
model_dir: pathlib.Path = pathlib.Path("models")
prompt_template: Optional[PromptTemplate] = None
generation_config: Optional[GenerationConfig] = None
# Load synchronization
# The bool is a master switch for accepting requests
# The lock keeps load tasks sequential
# The condition notifies any waiting tasks
active_job_ids: Dict[str, Any] = {}
loaded: bool = False
load_lock: asyncio.Lock
load_condition: asyncio.Condition
# Required methods
@classmethod
@abc.abstractmethod
async def create(cls, model_directory: pathlib.Path, **kwargs):
"""
Asynchronously creates and initializes a model container instance.
Args:
model_directory: Path to the model files.
**kwargs: Backend-specific configuration options.
Returns:
An instance of the implementing class.
"""
pass
@abc.abstractmethod
async def load(self, progress_callback=None, **kwargs):
"""
Loads the model into memory.
Args:
progress_callback: Optional callback for progress updates.
**kwargs: Additional loading options.
"""
pass
# NOTE: Might be an optional method
@abc.abstractmethod
async def load_gen(self, progress_callback=None, **kwargs) -> AsyncIterator[Any]:
"""
Loads the model into memory, yielding progress updates.
Args:
progress_callback: Optional callback for progress updates.
**kwargs: Additional loading options.
Yields:
Progress updates
"""
if False:
yield
@abc.abstractmethod
async def unload(self, loras_only: bool = False, **kwargs):
"""
Unloads the model and associated resources from memory.
Args:
loras_only: If True, only unload LoRAs.
**kwargs: Additional unloading options (e.g., shutdown).
"""
pass
@abc.abstractmethod
def encode_tokens(self, text: str, **kwargs) -> List[int]:
"""
Encodes a string of text into a list of token IDs.
Args:
text: The input text string.
**kwargs: Backend-specific encoding options (e.g., add_bos_token).
Returns:
A list of integer token IDs.
"""
pass
@abc.abstractmethod
def decode_tokens(self, ids: List[int], **kwargs) -> str:
"""
Decodes a list of token IDs back into a string.
Args:
ids: A list of integer token IDs.
**kwargs: Backend-specific decoding options (e.g., decode_special_tokens).
Returns:
The decoded text string.
"""
pass
@abc.abstractmethod
def get_special_tokens(self) -> Dict[str, Any]:
"""
Gets special tokens used by the model/tokenizer.
Args:
**kwargs: Options like add_bos_token, ban_eos_token.
Returns:
A dictionary mapping special token names (e.g., 'bos_token', 'eos_token')
to their string or ID representation.
"""
pass
@abc.abstractmethod
async def generate(
self,
request_id: str,
prompt: str,
params: BaseSamplerRequest,
abort_event: Optional[asyncio.Event] = None,
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
) -> Dict[str, Any]:
"""
Generates a complete response for a given prompt and parameters.
Args:
request_id: Unique identifier for the generation request.
prompt: The input prompt string.
params: Sampling and generation parameters.
abort_event: An asyncio Event to signal cancellation.
mm_embeddings: Optional multimodal embeddings.
Returns:
A dictionary containing the generation info
"""
pass
@abc.abstractmethod
async def stream_generate(
self,
request_id: str,
prompt: str,
params: BaseSamplerRequest,
abort_event: Optional[asyncio.Event] = None,
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
) -> AsyncIterator[Dict[str, Any]]:
"""
Generates a response iteratively (streaming) for a given prompt.
Args:
request_id: Unique identifier for the generation request.
prompt: The input prompt string.
params: Sampling and generation parameters.
abort_event: An asyncio Event to signal cancellation.
mm_embeddings: Optional multimodal embeddings.
Yields:
Generation chunks
"""
if False:
yield
@abc.abstractmethod
def model_info(self) -> ModelCard:
"""
Returns a dictionary of the current model's configuration parameters.
Returns:
Model parameters provided by the backend
"""
pass
@abc.abstractmethod
async def wait_for_jobs(self, skip_wait: bool = False):
"""
Waits for any active generation jobs to complete.
Args:
skip_wait: If True, cancel jobs immediately instead of waiting.
"""
pass
# Optional methods
async def load_loras(
self, lora_directory: pathlib.Path, **kwargs
) -> Dict[str, List[str]]:
"""
Loads LoRA adapters. Base implementation does nothing or raises error.
Args:
lora_directory: Path to the directory containing LoRA files.
**kwargs: LoRA configuration (e.g., list of loras, scaling).
Returns:
A dictionary indicating success/failure for each LoRA.
"""
logger.warning("LoRA loading not implemented for this backend.") # type: ignore
return {
"success": [],
"failure": [
lora.get("name", "unknown") for lora in kwargs.get("loras", [])
],
}
def get_loras(self) -> List[Any]:
"""
Gets the currently loaded LoRA adapters. Base implementation returns empty list.
Returns:
A list representing the loaded LoRAs (backend-specific format).
"""
return []