tabbyAPI-ollama/common/config_models.py
2024-09-15 17:50:37 +01:00

414 lines
14 KiB
Python

from pydantic import AliasChoices, BaseModel, ConfigDict, Field, PrivateAttr
from typing import List, Literal, Optional, Union
from pathlib import Path
from pydantic_core import PydanticUndefined
CACHE_SIZES = Literal["FP16", "Q8", "Q6", "Q4"]
class Metadata(BaseModel):
"""metadata model for config options"""
include_in_config: Optional[bool] = Field(True)
class BaseConfigModel(BaseModel):
"""Base model for config models with added metadata"""
_metadata: Metadata = PrivateAttr(Metadata())
class ConfigOverrideConfig(BaseConfigModel):
"""Model for overriding a provided config file."""
# TODO: convert this to a pathlib.path?
config: Optional[str] = Field(
None, description=("Path to an overriding config.yml file")
)
_metadata: Metadata = PrivateAttr(Metadata(include_in_config=False))
class UtilityActions(BaseConfigModel):
"""Model used for arg actions."""
# YAML export options
export_config: Optional[str] = Field(
None, description="generate a template config file"
)
config_export_path: Optional[Path] = Field(
"config_sample.yml", description="path to export configuration file to"
)
# OpenAPI JSON export options
export_openapi: Optional[bool] = Field(
False, description="export openapi schema files"
)
openapi_export_path: Optional[Path] = Field(
"openapi.json", description="path to export openapi schema to"
)
_metadata: Metadata = PrivateAttr(Metadata(include_in_config=False))
class NetworkConfig(BaseConfigModel):
"""Model for network configuration."""
host: Optional[str] = Field("127.0.0.1", description=("The IP to host on"))
port: Optional[int] = Field(5000, description=("The port to host on"))
disable_auth: Optional[bool] = Field(
False, description=("Disable HTTP token authentication with requests")
)
send_tracebacks: Optional[bool] = Field(
False,
description=("Decide whether to send error tracebacks over the API"),
)
api_servers: Optional[List[Literal["OAI", "Kobold"]]] = Field(
default_factory=list,
description=("API servers to enable. Options: (OAI, Kobold)"),
)
# TODO: Migrate config.yml to have the log_ prefix
# This is a breaking change.
class LoggingConfig(BaseConfigModel):
"""Model for logging configuration."""
log_prompt: Optional[bool] = Field(
False,
description=("Enable prompt logging"),
validation_alias=AliasChoices("log_prompt", "prompt"),
)
log_generation_params: Optional[bool] = Field(
False,
description=("Enable generation parameter logging"),
validation_alias=AliasChoices("log_generation_params", "generation_params"),
)
log_requests: Optional[bool] = Field(
False,
description=("Enable request logging"),
validation_alias=AliasChoices("log_requests", "requests"),
)
class ModelConfig(BaseConfigModel):
"""Model for LLM configuration."""
# TODO: convert this to a pathlib.path?
model_dir: str = Field(
"models",
description=(
"Overrides the directory to look for models (default: models). Windows "
"users, do NOT put this path in quotes."
),
)
use_dummy_models: Optional[bool] = Field(
False,
description=(
"Sends dummy model names when the models endpoint is queried. Enable this "
"if looking for specific OAI models."
),
)
model_name: Optional[str] = Field(
None,
description=(
"An initial model to load. Make sure the model is located in the model "
"directory! REQUIRED: This must be filled out to load a model on startup."
),
)
use_as_default: List[str] = Field(
default_factory=list,
description=(
"Names of args to use as a default fallback for API load requests "
"(default: []). Example: ['max_seq_len', 'cache_mode']"
),
)
max_seq_len: Optional[int] = Field(
None,
description=(
"Max sequence length. Fetched from the model's base sequence length in "
"config.json by default."
),
ge=0,
)
override_base_seq_len: Optional[int] = Field(
None,
description=(
"Overrides base model context length. WARNING: Only use this if the "
"model's base sequence length is incorrect."
),
ge=0,
)
tensor_parallel: Optional[bool] = Field(
False,
description=(
"Load model with tensor parallelism. Fallback to autosplit if GPU split "
"isn't provided."
),
)
gpu_split_auto: Optional[bool] = Field(
True,
description=(
"Automatically allocate resources to GPUs (default: True). Not parsed for "
"single GPU users."
),
)
autosplit_reserve: List[int] = Field(
[96],
description=(
"Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0). "
"Represented as an array of MB per GPU."
),
)
gpu_split: List[float] = Field(
default_factory=list,
description=(
"An integer array of GBs of VRAM to split between GPUs (default: []). "
"Used with tensor parallelism."
),
)
rope_scale: Optional[float] = Field(
1.0,
description=(
"Rope scale (default: 1.0). Same as compress_pos_emb. Only use if the "
"model was trained on long context with rope."
),
)
rope_alpha: Optional[Union[float, Literal["auto"]]] = Field(
1.0,
description=(
"Rope alpha (default: 1.0). Same as alpha_value. Set to 'auto' to auto- "
"calculate."
),
)
cache_mode: Optional[CACHE_SIZES] = Field(
"FP16",
description=(
"Enable different cache modes for VRAM savings (default: FP16). Possible "
f"values: {str(CACHE_SIZES)[15:-1]}"
),
)
cache_size: Optional[int] = Field(
None,
description=(
"Size of the prompt cache to allocate (default: max_seq_len). Must be a "
"multiple of 256."
),
multiple_of=256,
gt=0,
)
chunk_size: Optional[int] = Field(
2048,
description=(
"Chunk size for prompt ingestion (default: 2048). A lower value reduces "
"VRAM usage but decreases ingestion speed."
),
gt=0,
)
max_batch_size: Optional[int] = Field(
None,
description=(
"Set the maximum number of prompts to process at one time (default: "
"None/Automatic). Automatically calculated if left blank."
),
ge=1,
)
prompt_template: Optional[str] = Field(
None,
description=(
"Set the prompt template for this model. If empty, attempts to look for "
"the model's chat template."
),
)
num_experts_per_token: Optional[int] = Field(
None,
description=(
"Number of experts to use per token. Fetched from the model's "
"config.json. For MoE models only."
),
ge=1,
)
fasttensors: Optional[bool] = Field(
False,
description=(
"Enables fasttensors to possibly increase model loading speeds (default: "
"False)."
),
)
_metadata: Metadata = PrivateAttr(Metadata())
model_config = ConfigDict(protected_namespaces=())
class DraftModelConfig(BaseConfigModel):
"""Model for draft LLM model configuration."""
# TODO: convert this to a pathlib.path?
draft_model_dir: Optional[str] = Field(
"models",
description=(
"Overrides the directory to look for draft models (default: models)"
),
)
draft_model_name: Optional[str] = Field(
None,
description=(
"An initial draft model to load. Ensure the model is in the model"
"directory."
),
)
draft_rope_scale: Optional[float] = Field(
1.0,
description=(
"Rope scale for draft models (default: 1.0). Same as compress_pos_emb. "
"Use if the draft model was trained on long context with rope."
),
)
draft_rope_alpha: Optional[float] = Field(
None,
description=(
"Rope alpha for draft models (default: None). Same as alpha_value. Leave "
"blank to auto-calculate the alpha value."
),
)
draft_cache_mode: Optional[CACHE_SIZES] = Field(
"FP16",
description=(
"Cache mode for draft models to save VRAM (default: FP16). Possible "
f"values: {str(CACHE_SIZES)[15:-1]}"
),
)
class LoraInstanceModel(BaseConfigModel):
"""Model representing an instance of a Lora."""
name: str = Field(..., description=("Name of the LoRA model"))
scaling: float = Field(
1.0,
description=("Scaling factor for the LoRA model (default: 1.0)"),
ge=0,
)
class LoraConfig(BaseConfigModel):
"""Model for lora configuration."""
# TODO: convert this to a pathlib.path?
lora_dir: Optional[str] = Field(
"loras", description=("Directory to look for LoRAs (default: 'loras')")
)
loras: Optional[List[LoraInstanceModel]] = Field(
None,
description=(
"List of LoRAs to load and associated scaling factors (default scaling: "
"1.0)"
),
)
class SamplingConfig(BaseConfigModel):
"""Model for sampling (overrides) config."""
override_preset: Optional[str] = Field(
None, description=("Select a sampler override preset")
)
class DeveloperConfig(BaseConfigModel):
"""Model for developer settings configuration."""
unsafe_launch: Optional[bool] = Field(
False, description=("Skip Exllamav2 version check")
)
disable_request_streaming: Optional[bool] = Field(
False, description=("Disables API request streaming")
)
cuda_malloc_backend: Optional[bool] = Field(
False, description=("Runs with the pytorch CUDA malloc backend")
)
uvloop: Optional[bool] = Field(
False, description=("Run asyncio using Uvloop or Winloop")
)
realtime_process_priority: Optional[bool] = Field(
False,
description=(
"Set process to use a higher priority For realtime process priority, run "
"as administrator or sudo Otherwise, the priority will be set to high"
),
)
class EmbeddingsConfig(BaseConfigModel):
"""Model for embeddings configuration."""
# TODO: convert this to a pathlib.path?
embedding_model_dir: Optional[str] = Field(
"models",
description=(
"Overrides directory to look for embedding models (default: models)"
),
)
embeddings_device: Optional[Literal["cpu", "auto", "cuda"]] = Field(
"cpu",
description=(
"Device to load embedding models on (default: cpu). Possible values: cpu, "
"auto, cuda. If using an AMD GPU, set this value to 'cuda'."
),
)
embedding_model_name: Optional[str] = Field(
None, description=("The embeddings model to load")
)
class TabbyConfigModel(BaseModel):
"""Base model for a TabbyConfig."""
config: ConfigOverrideConfig = Field(
default_factory=ConfigOverrideConfig.model_construct
)
network: NetworkConfig = Field(default_factory=NetworkConfig.model_construct)
logging: LoggingConfig = Field(default_factory=LoggingConfig.model_construct)
model: ModelConfig = Field(default_factory=ModelConfig.model_construct)
draft_model: DraftModelConfig = Field(
default_factory=DraftModelConfig.model_construct
)
lora: LoraConfig = Field(default_factory=LoraConfig.model_construct)
sampling: SamplingConfig = Field(default_factory=SamplingConfig.model_construct)
developer: DeveloperConfig = Field(default_factory=DeveloperConfig.model_construct)
embeddings: EmbeddingsConfig = Field(
default_factory=EmbeddingsConfig.model_construct
)
actions: UtilityActions = Field(default_factory=UtilityActions.model_construct)
model_config = ConfigDict(validate_assignment=True, protected_namespaces=())
def generate_config_file(
model: BaseConfigModel = None,
filename: str = "config_sample.yml",
indentation: int = 2,
) -> None:
"""Creates a config.yml file from Pydantic models."""
schema = model if model else TabbyConfigModel()
yaml = ""
for field, field_data in schema.model_fields.items():
subfield_model = field_data.default_factory()
if not subfield_model._metadata.include_in_config:
continue
yaml += f"# {subfield_model.__doc__}\n"
yaml += f"{field}:\n"
for subfield, subfield_data in subfield_model.model_fields.items():
value = subfield_data.default
value = value if value is not None else ""
value = value if value is not PydanticUndefined else ""
yaml += f"{' ' * indentation}# {subfield_data.description}\n"
yaml += f"{' ' * indentation}{subfield}: {value}\n"
yaml += "\n"
with open(filename, "w") as f:
f.write(yaml)