tabbyAPI-ollama/main.py
kingbri 30ab8e04b9 Args: Add subcommands to run actions
Migrate OpenAPI and sample config export to subcommands "export-openapi"
and "export-config".

Also add a "download" subcommand that passes args to the TabbyAPI
downloader. This allows models to be downloaded via the API and
CLI args.

Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
2025-02-10 23:14:22 -05:00

170 lines
5.1 KiB
Python

"""The main tabbyAPI module. Contains the FastAPI server and endpoints."""
import argparse
import asyncio
import os
import pathlib
import platform
import signal
from loguru import logger
from typing import Optional
from common import gen_logging, sampling, model
from common.args import convert_args_to_dict, init_argparser
from common.auth import load_auth_keys
from common.actions import run_subcommand
from common.logger import setup_logger
from common.networking import is_port_in_use
from common.signals import signal_handler
from common.tabby_config import config
from endpoints.server import start_api
from backends.exllamav2.version import check_exllama_version
async def entrypoint_async():
"""Async entry function for program startup"""
host = config.network.host
port = config.network.port
# Check if the port is available and attempt to bind a fallback
if is_port_in_use(port):
fallback_port = port + 1
if is_port_in_use(fallback_port):
logger.error(
f"Ports {port} and {fallback_port} are in use by different services.\n"
"Please free up those ports or specify a different one.\n"
"Exiting."
)
return
else:
logger.warning(
f"Port {port} is currently in use. Switching to {fallback_port}."
)
port = fallback_port
# Initialize auth keys
await load_auth_keys(config.network.disable_auth)
gen_logging.broadcast_status()
# Set sampler parameter overrides if provided
sampling_override_preset = config.sampling.override_preset
if sampling_override_preset:
try:
await sampling.overrides_from_file(sampling_override_preset)
except FileNotFoundError as e:
logger.warning(str(e))
# If an initial model name is specified, create a container
# and load the model
model_name = config.model.model_name
if model_name:
model_path = pathlib.Path(config.model.model_dir)
model_path = model_path / model_name
# TODO: remove model_dump()
await model.load_model(
model_path.resolve(),
**config.model.model_dump(exclude_none=True),
draft_model=config.draft_model.model_dump(exclude_none=True),
)
# Load loras after loading the model
if config.lora.loras:
lora_dir = pathlib.Path(config.lora.lora_dir)
# TODO: remove model_dump()
await model.container.load_loras(
lora_dir.resolve(), **config.lora.model_dump()
)
# If an initial embedding model name is specified, create a separate container
# and load the model
embedding_model_name = config.embeddings.embedding_model_name
if embedding_model_name:
embedding_model_path = pathlib.Path(config.embeddings.embedding_model_dir)
embedding_model_path = embedding_model_path / embedding_model_name
try:
# TODO: remove model_dump()
await model.load_embedding_model(
embedding_model_path, **config.embeddings.model_dump()
)
except ImportError as ex:
logger.error(ex.msg)
await start_api(host, port)
def entrypoint(
args: Optional[argparse.Namespace] = None,
parser: Optional[argparse.ArgumentParser] = None,
):
setup_logger()
# Set up signal aborting
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
if platform.system() == "Windows":
from winloop import install
else:
from uvloop import install
# Set loop event policy
install()
# Parse and override config from args
if args is None:
parser = init_argparser()
args = parser.parse_args()
dict_args = convert_args_to_dict(args, parser)
# load config
config.load(dict_args)
# branch to default paths if required
if run_subcommand(args):
return
# Check exllamav2 version and give a descriptive error if it's too old
# Skip if launching unsafely
if config.developer.unsafe_launch:
logger.warning(
"UNSAFE: Skipping ExllamaV2 version check.\n"
"If you aren't a developer, please keep this off!"
)
else:
check_exllama_version()
# Enable CUDA malloc backend
if config.developer.cuda_malloc_backend:
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "backend:cudaMallocAsync"
logger.warning("EXPERIMENTAL: Enabled the pytorch CUDA malloc backend.")
# Set the process priority
if config.developer.realtime_process_priority:
import psutil
current_process = psutil.Process(os.getpid())
if platform.system() == "Windows":
current_process.nice(psutil.REALTIME_PRIORITY_CLASS)
else:
current_process.nice(psutil.IOPRIO_CLASS_RT)
logger.warning(
"EXPERIMENTAL: Process priority set to Realtime. \n"
"If you're not running on administrator/sudo, the priority is set to high."
)
# Enter into the async event loop
asyncio.run(entrypoint_async())
if __name__ == "__main__":
entrypoint()