tabbyAPI-ollama/model.py
DocShotgun 7380a3b79a Implement lora support (#24)
* Model: Implement basic lora support

* Add ability to load loras from config on launch
* Supports loading multiple loras and lora scaling
* Add function to unload loras

* Colab: Update for basic lora support

* Model: Test vram alloc after lora load, add docs

* Git: Add loras folder to .gitignore

* API: Add basic lora-related endpoints

* Add /loras/ endpoint for querying available loras
* Add /model/lora endpoint for querying currently loaded loras
* Add /model/lora/load endpoint for loading loras
* Add /model/lora/unload endpoint for unloading loras
* Move lora config-checking logic to main.py for better compat with API endpoints

* Revert bad CRLF line ending changes

* API: Add basic lora-related endpoints (fixed)

* Add /loras/ endpoint for querying available loras
* Add /model/lora endpoint for querying currently loaded loras
* Add /model/lora/load endpoint for loading loras
* Add /model/lora/unload endpoint for unloading loras
* Move lora config-checking logic to main.py for better compat with API endpoints

* Model: Unload loras first when unloading model

* API + Models: Cleanup lora endpoints and functions

Condenses down endpoint and model load code. Also makes the routes
behave the same way as model routes to help not confuse the end user.

Signed-off-by: kingbri <bdashore3@proton.me>

* Loras: Optimize load endpoint

Return successes and failures along with consolidating the request
to the rewritten load_loras function.

Signed-off-by: kingbri <bdashore3@proton.me>

---------

Co-authored-by: kingbri <bdashore3@proton.me>
Co-authored-by: DocShotgun <126566557+DocShotgun@users.noreply.github.com>
2023-12-08 23:38:08 -05:00

468 lines
19 KiB
Python

import gc, time, pathlib
import torch
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Cache_8bit,
ExLlamaV2Tokenizer,
ExLlamaV2Lora
)
from exllamav2.generator import(
ExLlamaV2StreamingGenerator,
ExLlamaV2Sampler
)
from typing import List, Optional, Union
# Bytes to reserve on first device when loading with auto split
auto_split_reserve_bytes = 96 * 1024**2
class ModelContainer:
config: Optional[ExLlamaV2Config] = None
draft_config: Optional[ExLlamaV2Config] = None
model: Optional[ExLlamaV2] = None
draft_model: Optional[ExLlamaV2] = None
cache: Optional[ExLlamaV2Cache] = None
draft_cache: Optional[ExLlamaV2Cache] = None
tokenizer: Optional[ExLlamaV2Tokenizer] = None
generator: Optional[ExLlamaV2StreamingGenerator] = None
cache_fp8: bool = False
gpu_split_auto: bool = True
gpu_split: list or None = None
active_loras: List[ExLlamaV2Lora] = []
def __init__(self, model_directory: pathlib.Path, quiet = False, **kwargs):
"""
Create model container
Args:
model_dir (int): Model directory containing config.json, tokenizer.model etc.
quiet (bool): Suppress console output
load_progress_callback (function, optional): A function to call for each module loaded. Prototype:
def progress(loaded_modules: int, total_modules: int, loading_draft: bool)
**kwargs:
`cache_mode` (str): Sets cache mode, "FP16" or "FP8" (defaulf: "FP16")
'max_seq_len' (int): Override model's default max sequence length (default: 4096)
'rope_scale' (float): Set RoPE scaling factor for model (default: 1.0)
'rope_alpha' (float): Set RoPE alpha (NTK) factor for model (default: 1.0)
'chunk_size' (int): Sets the maximum chunk size for the model (default: 2048)
Inferencing in chunks reduces overall VRAM overhead by processing very long sequences in smaller
batches. This limits the size of temporary buffers needed for the hidden state and attention
weights.
'draft_model_dir' (str): Draft model directory
'draft_rope_scale' (float): Set RoPE scaling factor for draft model (default: 1.0)
'draft_rope_alpha' (float): RoPE alpha (NTK) factor for draft model.
By default, the draft model's alpha value is calculated automatically to scale to the size of the
full model.
'lora_dir' (str): Lora directory
'loras' (list[dict]): List of loras to be loaded, consisting of 'name' and 'scaling'
'gpu_split_auto' (bool): Automatically split model across available devices (default: True)
'gpu_split' (list[float]): Allocation for weights and (some) tensors, per device
'no_flash_attn' (bool): Turns off flash attention (increases vram usage) (default: False)
"""
self.quiet = quiet
self.cache_fp8 = "cache_mode" in kwargs and kwargs["cache_mode"] == "FP8"
self.gpu_split = kwargs.get("gpu_split")
self.gpu_split_auto = kwargs.get("gpu_split_auto") or True
self.config = ExLlamaV2Config()
self.config.model_dir = str(model_directory.resolve())
self.config.prepare()
# Grab the base model's sequence length before overrides for rope calculations
base_seq_len = self.config.max_seq_len
# Then override the max_seq_len if present
self.config.max_seq_len = kwargs.get("max_seq_len") or 4096
self.config.scale_pos_emb = kwargs.get("rope_scale") or 1.0
# Automatically calculate rope alpha
self.config.scale_alpha_value = kwargs.get("rope_alpha") or self.calculate_rope_alpha(base_seq_len)
# Turn off flash attention?
self.config.no_flash_attn = kwargs.get("no_flash_attn") or False
# low_mem is currently broken in exllamav2. Don't use it until it's fixed.
"""
if "low_mem" in kwargs and kwargs["low_mem"]:
self.config.set_low_mem()
"""
chunk_size = min(kwargs.get("chunk_size") or 2048, self.config.max_seq_len)
self.config.max_input_len = chunk_size
self.config.max_attn_size = chunk_size ** 2
draft_args = kwargs.get("draft") or {}
draft_model_name = draft_args.get("draft_model_name")
enable_draft = draft_args and draft_model_name
# Always disable draft if params are incorrectly configured
if draft_args and draft_model_name is None:
print("A draft config was found but a model name was not given. Please check your config.yml! Skipping draft load.")
enable_draft = False
if enable_draft:
self.draft_config = ExLlamaV2Config()
draft_model_path = pathlib.Path(draft_args.get("draft_model_dir") or "models")
draft_model_path = draft_model_path / draft_model_name
self.draft_config.model_dir = str(draft_model_path.resolve())
self.draft_config.prepare()
self.draft_config.scale_pos_emb = draft_args.get("draft_rope_scale") or 1.0
self.draft_config.scale_alpha_value = draft_args.get("draft_rope_alpha") or self.calculate_rope_alpha(self.draft_config.max_seq_len)
self.draft_config.max_seq_len = self.config.max_seq_len
if "chunk_size" in kwargs:
self.draft_config.max_input_len = kwargs["chunk_size"]
self.draft_config.max_attn_size = kwargs["chunk_size"] ** 2
def calculate_rope_alpha(self, base_seq_len):
ratio = self.config.max_seq_len / base_seq_len
# Default to a 1 alpha if the sequence length is ever less than or equal to 1
alpha = 1 if ratio <= 1.0 else -0.13436 + 0.80541 * ratio + 0.28833 * ratio ** 2
return alpha
def get_model_path(self):
model_path = pathlib.Path(self.config.model_dir)
return model_path
def load(self, progress_callback = None):
"""
Load model
Args:
progress_callback (function, optional): A function to call for each module loaded. Prototype:
def progress(loaded_modules: int, total_modules: int)
"""
for _ in self.load_gen(progress_callback): pass
def load_loras(self, lora_directory: pathlib.Path, **kwargs):
"""
Load loras
"""
loras = kwargs.get("loras") or []
success: List[str] = []
failure: List[str] = []
for lora in loras:
lora_name = lora.get("name") or None
lora_scaling = lora.get("scaling") or 1.0
if lora_name is None:
print("One of your loras does not have a name. Please check your config.yml! Skipping lora load.")
failure.append(lora_name)
continue
print(f"Loading lora: {lora_name} at scaling {lora_scaling}")
lora_path = lora_directory / lora_name
self.active_loras.append(ExLlamaV2Lora.from_directory(self.model, lora_path, lora_scaling))
print("Lora successfully loaded.")
success.append(lora_name)
# Return success and failure names
return { 'success': success, 'failure': failure }
def load_gen(self, progress_callback = None):
"""
Load model, generator function
Args:
progress_callback (function, optional): A function to call for each module loaded. Prototype:
def progress(loaded_modules: int, total_modules: int)
"""
# Load tokenizer
self.tokenizer = ExLlamaV2Tokenizer(self.config)
# Load draft model if a config is present
if self.draft_config:
self.draft_model = ExLlamaV2(self.draft_config)
if not self.quiet:
print("Loading draft model: " + self.draft_config.model_dir)
self.draft_cache = ExLlamaV2Cache(self.draft_model, lazy = True)
reserve = [auto_split_reserve_bytes] + [0] * 16
yield from self.draft_model.load_autosplit_gen(self.draft_cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
# Test VRAM allocation with a full-length forward pass
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
self.draft_model.forward(input_ids, cache = self.cache, preprocess_only = True)
# Load model
self.model = ExLlamaV2(self.config)
if not self.quiet:
print("Loading model: " + self.config.model_dir)
if not self.gpu_split_auto:
for value in self.model.load_gen(self.gpu_split, callback_gen = progress_callback):
if isinstance(value, str):
yield value
if self.cache_fp8:
self.cache = ExLlamaV2Cache_8bit(self.model, lazy = self.gpu_split_auto)
else:
self.cache = ExLlamaV2Cache(self.model, lazy = self.gpu_split_auto)
if self.gpu_split_auto:
reserve = [auto_split_reserve_bytes] + [0] * 16
yield from self.model.load_autosplit_gen(self.cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
# Test VRAM allocation with a full-length forward pass
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
self.model.forward(input_ids, cache = self.cache, preprocess_only = True)
# Create generator
self.generator = ExLlamaV2StreamingGenerator(self.model, self.cache, self.tokenizer, self.draft_model, self.draft_cache)
print("Model successfully loaded.")
def unload(self, loras_only: bool = False):
"""
Free all VRAM resources used by this model
"""
for lora in self.active_loras:
lora.unload()
self.active_loras = []
# Unload the entire model if not just unloading loras
if not loras_only:
if self.model: self.model.unload()
self.model = None
if self.draft_model: self.draft_model.unload()
self.draft_model = None
self.config = None
self.cache = None
self.tokenizer = None
self.generator = None
gc.collect()
torch.cuda.empty_cache()
# Common function for token operations
def get_tokens(self, text: Optional[str], ids: Optional[List[int]], **kwargs):
if text:
# Assume token encoding
return self.tokenizer.encode(
text,
add_bos = kwargs.get("add_bos_token") or True,
encode_special_tokens = kwargs.get("encode_special_tokens") or True
)
if ids:
# Assume token decoding
ids = torch.tensor([ids])
return self.tokenizer.decode(ids, decode_special_tokens = kwargs.get("decode_special_tokens") or True)[0]
def generate(self, prompt: str, **kwargs):
gen = list(self.generate_gen(prompt, **kwargs))
reponse = "".join(map(lambda o: o[0], gen))
return reponse, gen[-1][1], gen[-1][2]
def generate_gen(self, prompt: str, **kwargs):
"""
Create generator function for prompt completion
Args:
prompt (str): Input prompt
**kwargs:
'token_healing' (bool): Use token healing (default: False)
'temperature' (float): Sampling temperature (default: 1.0)
'temperature_last' (bool): Apply temperature after all other samplers (default: False)
'top_k' (int): Sampling top-K (default: 0)
'top_p' (float): Sampling top-P (default: 1.0)
'min_p' (float): Sampling min-P (default: 0.0)
'tfs' (float): Tail-free sampling (default: 0.0)
'typical' (float): Sampling typical (default: 0.0)
'mirostat' (bool): Use Mirostat (default: False)
'mirostat_tau' (float) Mirostat tau parameter (default: 1.5)
'mirostat_eta' (float) Mirostat eta parameter (default: 0.1)
'repetition_penalty' (float): Token repetition/presence penalty (default: 1.15)
'repetition_range' (int): Repetition penalty range (default: whole context)
'repetition_decay' (int): Repetition penalty range (default: same as range)
'stop' (List[Union[str, int]]): List of stop strings/tokens to end response (default: [EOS])
'max_tokens' (int): Max no. tokens in response (default: 150)
'add_bos_token' (bool): Adds the BOS token to the start of the prompt (default: True)
'ban_eos_token' (bool): Bans the EOS token from generation (default: False)
'stream_interval' (float): Interval in seconds between each output chunk (default: immediate)
'generate_window' (int): Space to reserve at the end of the model's context when generating.
Rolls context window by the same amount if context length is exceeded to allow generating past
the models max_seq_len.
"""
token_healing = kwargs.get("token_healing") or False
max_tokens = kwargs.get("max_tokens") or 150
stream_interval = kwargs.get("stream_interval") or 0
generate_window = min(kwargs.get("generate_window") or 512, max_tokens)
# Sampler settings
gen_settings = ExLlamaV2Sampler.Settings()
# Warn of unsupported settings if the setting is enabled
if (kwargs.get("mirostat") or False) and not hasattr(gen_settings, "mirostat"):
print(" !! Warning: Currently installed ExLlamaV2 does not support Mirostat sampling")
if (kwargs.get("min_p") or 0.0) not in [0.0, 1.0] and not hasattr(gen_settings, "min_p"):
print(" !! Warning: Currently installed ExLlamaV2 does not support min-P sampling")
if (kwargs.get("tfs") or 0.0) not in [0.0, 1.0] and not hasattr(gen_settings, "tfs"):
print(" !! Warning: Currently installed ExLlamaV2 does not support tail-free sampling (TFS)")
if (kwargs.get("temperature_last") or False) and not hasattr(gen_settings, "temperature_last"):
print(" !! Warning: Currently installed ExLlamaV2 does not support temperature_last")
#Apply settings
gen_settings.temperature = kwargs.get("temperature") or 1.0
gen_settings.temperature_last = kwargs.get("temperature_last") or False
gen_settings.top_k = kwargs.get("top_k") or 0
gen_settings.top_p = kwargs.get("top_p") or 1.0
gen_settings.min_p = kwargs.get("min_p") or 0.0
gen_settings.tfs = kwargs.get("tfs") or 1.0
gen_settings.typical = kwargs.get("typical") or 1.0
gen_settings.mirostat = kwargs.get("mirostat") or False
# Default tau and eta fallbacks don't matter if mirostat is off
gen_settings.mirostat_tau = kwargs.get("mirostat_tau") or 1.5
gen_settings.mirostat_eta = kwargs.get("mirostat_eta") or 0.1
gen_settings.token_repetition_penalty = kwargs.get("repetition_penalty") or 1.0
gen_settings.token_repetition_range = kwargs.get("repetition_range") or self.config.max_seq_len
# Always make sure the fallback is 0 if range < 0
# It's technically fine to use -1, but this just validates the passed fallback
fallback_decay = 0 if gen_settings.token_repetition_range <= 0 else gen_settings.token_repetition_range
gen_settings.token_repetition_decay = kwargs.get("repetition_decay") or fallback_decay or 0
stop_conditions: List[Union[str, int]] = kwargs.get("stop") or []
ban_eos_token = kwargs.get("ban_eos_token") or False
# Ban the EOS token if specified. If not, append to stop conditions as well.
if ban_eos_token:
gen_settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id])
else:
stop_conditions.append(self.tokenizer.eos_token_id)
# Override sampler settings for temp = 0
if gen_settings.temperature == 0:
gen_settings.temperature = 1.0
gen_settings.top_k = 1
gen_settings.top_p = 0
gen_settings.typical = 0
# Stop conditions
self.generator.set_stop_conditions(stop_conditions)
# Tokenized context
ids = self.tokenizer.encode(
prompt,
add_bos = kwargs.get("add_bos_token") or True,
encode_special_tokens = True
)
context_len = len(ids[0])
if context_len > self.config.max_seq_len:
print(
f"WARNING: The context length {context_len} is greater than the max_seq_len {self.config.max_seq_len}.",
"Generation is truncated and metrics may not be accurate."
)
prompt_tokens = ids.shape[-1]
# Begin
generated_tokens = 0
full_response = ""
start_time = time.time()
last_chunk_time = start_time
save_tokens = torch.empty((1, 0), dtype = torch.bool)
chunk_buffer = ""
chunk_tokens = 0
while True:
# Ingest prompt
if chunk_tokens == 0:
ids = torch.cat((ids, save_tokens), dim = - 1)
save_tokens = torch.empty((1, 0), dtype = torch.bool)
overflow = ids.shape[-1] + generate_window - self.config.max_seq_len
active_ids = ids[:, max(0, overflow):]
chunk_tokens = self.config.max_seq_len - active_ids.shape[-1]
self.generator.begin_stream(active_ids, gen_settings, token_healing = token_healing, loras = self.active_loras)
# Generate
chunk, eos, tokens = self.generator.stream()
if token_healing:
ids[:, -1] = self.generator.sequence_ids[:, -2] # Extract healed token
token_healing = False
save_tokens = torch.cat((save_tokens, tokens), dim=-1)
chunk_buffer += chunk
generated_tokens += 1
chunk_tokens -= 1
# Yield output
now = time.time()
elapsed = now - last_chunk_time
if chunk_buffer != "" and (elapsed > stream_interval or eos or generated_tokens == max_tokens):
yield chunk_buffer, prompt_tokens, generated_tokens
full_response += chunk_buffer
chunk_buffer = ""
last_chunk_time = now
if eos or generated_tokens == max_tokens: break
elapsed_time = last_chunk_time - start_time
initial_response = f"Response: {generated_tokens} tokens generated in {round(elapsed_time, 2)} seconds"
itemization = []
extra_parts = []
# Add tokens per second
itemization.append(f"{'Indeterminate' if elapsed_time == 0 else round(generated_tokens / elapsed_time, 2)} T/s")
# Add context (original token count)
if ids is not None:
itemization.append(f"context {context_len} tokens")
if context_len > self.config.max_seq_len:
extra_parts.append("<-- Not accurate (truncated)")
# Print output
print(initial_response + " (" + ", ".join(itemization) + ") " + " ".join(extra_parts))