tabbyAPI-ollama/common/sampling.py
TerminalMan 7d18d2e2ca
Refactor the sampling class (#199)
* improve validation

* remove to_gen_params functions

* update changes for all endpoint types

* OAI: Fix calls to generation

Chat completion and completion need to have prompt split out before
pushing to the backend.

Signed-off-by: kingbri <bdashore3@proton.me>

* Sampling: Convert Top-K values of -1 to 0

Some OAI implementations use -1 as disabled instead of 0. Therefore,
add a coalesce case.

Signed-off-by: kingbri <bdashore3@proton.me>

* Sampling: Format and space out

Make the code more readable.

Signed-off-by: kingbri <bdashore3@proton.me>

* Sampling: Fix mirostat

Field items are nested in data within a Pydantic FieldInfo

Signed-off-by: kingbri <bdashore3@proton.me>

* Sampling: Format

Signed-off-by: kingbri <bdashore3@proton.me>

* Sampling: Fix banned_tokens and allowed_tokens conversion

If the provided string has whitespace, trim it before splitting.

Signed-off-by: kingbri <bdashore3@proton.me>

* Sampling: Add helpful log to dry_sequence_breakers

Let the user know if the sequence errors out.

Signed-off-by: kingbri <bdashore3@proton.me>

* Sampling: Apply validators in right order

Validators need to be applied in order from top to bottom, this is why
the after validator was not being applied properly.

Set the model to validate default params for sampler override purposes.
This can be turned off if there are unclear errors.

Signed-off-by: kingbri <bdashore3@proton.me>

* Endpoints: Format

Cleanup and semantically fix field validators

Signed-off-by: kingbri <bdashore3@proton.me>

* Kobold: Update validators and fix parameter application

Validators on parent fields cannot see child fields. Therefore,
validate using the child fields instead and alter the parent field
data from there.

Also fix badwordsids casting.

Signed-off-by: kingbri <bdashore3@proton.me>

* Sampling: Remove validate defaults and fix mirostat

If a user sets an override to a non-default value, that's their
own fault.

Run validator on the actual mirostat_mode parameter rather than
the alternate mirostat parameter.

Signed-off-by: kingbri <bdashore3@proton.me>

* Kobold: Rework badwordsids

Currently, this serves to ban the EOS token. All other functionality
was legacy, so remove it.

Signed-off-by: kingbri <bdashore3@proton.me>

* Model: Remove HuggingfaceConfig

This was only necessary for badwordsids. All other fields are handled
by exl2. Keep the class as a stub if it's needed again.

Signed-off-by: kingbri <bdashore3@proton.me>

* Kobold: Bump kcpp impersonation

TabbyAPI supports XTC now.

Signed-off-by: kingbri <bdashore3@proton.me>

* Sampling: Change alias to validation_alias

Reduces the probability for errors and makes the class consistent.

Signed-off-by: kingbri <bdashore3@proton.me>

* OAI: Use constraints for validation

Instead of adding a model_validator, use greater than or equal to
constraints provided by Pydantic.

Signed-off-by: kingbri <bdashore3@proton.me>

* Tree: Lint

Signed-off-by: kingbri <bdashore3@proton.me>

---------

Co-authored-by: SecretiveShell <84923604+SecretiveShell@users.noreply.github.com>
Co-authored-by: kingbri <bdashore3@proton.me>
2024-10-27 11:43:41 -04:00

432 lines
14 KiB
Python

"""Common functions for sampling parameters"""
import aiofiles
import json
import pathlib
from pydantic_core import ValidationError
from ruamel.yaml import YAML
from copy import deepcopy
from loguru import logger
from pydantic import (
AliasChoices,
BaseModel,
Field,
field_validator,
model_validator,
)
from typing import Dict, List, Optional, Union
from common.utils import filter_none_values, unwrap
# Common class for sampler params
class BaseSamplerRequest(BaseModel):
"""Common class for sampler params that are used in APIs"""
max_tokens: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("max_tokens"),
validation_alias=AliasChoices("max_tokens", "max_length"),
description="Aliases: max_length",
examples=[150],
ge=0,
)
min_tokens: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("min_tokens", 0),
validation_alias=AliasChoices("min_tokens", "min_length"),
description="Aliases: min_length",
examples=[0],
ge=0,
)
generate_window: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("generate_window"),
examples=[512],
ge=0,
)
stop: Optional[Union[str, List[Union[str, int]]]] = Field(
default_factory=lambda: get_default_sampler_value("stop", []),
validation_alias=AliasChoices("stop", "stop_sequence"),
description="Aliases: stop_sequence",
)
banned_strings: Optional[Union[str, List[str]]] = Field(
default_factory=lambda: get_default_sampler_value("banned_strings", [])
)
banned_tokens: Optional[Union[List[int], str]] = Field(
default_factory=lambda: get_default_sampler_value("banned_tokens", []),
validation_alias=AliasChoices("banned_tokens", "custom_token_bans"),
description="Aliases: custom_token_bans",
examples=[[128, 330]],
)
allowed_tokens: Optional[Union[List[int], str]] = Field(
default_factory=lambda: get_default_sampler_value("allowed_tokens", []),
validation_alias=AliasChoices("allowed_tokens", "allowed_token_ids"),
description="Aliases: allowed_token_ids",
examples=[[128, 330]],
)
token_healing: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("token_healing", False)
)
temperature: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("temperature", 1.0),
examples=[1.0],
ge=0,
le=10,
)
temperature_last: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("temperature_last", False),
)
smoothing_factor: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("smoothing_factor", 0.0),
ge=0,
)
top_k: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("top_k", 0),
ge=-1,
)
top_p: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("top_p", 1.0),
ge=0,
le=1,
examples=[1.0],
)
top_a: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("top_a", 0.0)
)
min_p: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("min_p", 0.0)
)
tfs: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("tfs", 1.0),
examples=[1.0],
)
typical: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("typical", 1.0),
validation_alias=AliasChoices("typical", "typical_p"),
description="Aliases: typical_p",
examples=[1.0],
gt=0,
le=1,
)
skew: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("skew", 0.0),
examples=[0.0],
)
xtc_probability: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("xtc_probability", 0.0),
)
xtc_threshold: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("xtc_threshold", 0.1)
)
frequency_penalty: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("frequency_penalty", 0.0),
ge=0,
)
presence_penalty: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("presence_penalty", 0.0),
ge=0,
)
repetition_penalty: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("repetition_penalty", 1.0),
validation_alias=AliasChoices("repetition_penalty", "rep_pen"),
description="Aliases: rep_pen",
examples=[1.0],
gt=0,
)
penalty_range: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("penalty_range", -1),
validation_alias=AliasChoices(
"penalty_range",
"repetition_range",
"repetition_penalty_range",
"rep_pen_range",
),
description=(
"Aliases: repetition_range, repetition_penalty_range, " "rep_pen_range"
),
)
repetition_decay: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("repetition_decay", 0)
)
dry_multiplier: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("dry_multiplier", 0.0)
)
dry_base: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("dry_base", 0.0)
)
dry_allowed_length: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("dry_allowed_length", 0)
)
dry_range: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("dry_range", 0),
validation_alias=AliasChoices("dry_range", "dry_penalty_last_n"),
description=("Aliases: dry_penalty_last_n"),
)
dry_sequence_breakers: Optional[Union[str, List[str]]] = Field(
default_factory=lambda: get_default_sampler_value("dry_sequence_breakers", [])
)
mirostat: Optional[bool] = False
mirostat_mode: Optional[int] = Field(
default_factory=lambda: get_default_sampler_value("mirostat_mode", 0)
)
mirostat_tau: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("mirostat_tau", 1.5),
examples=[1.5],
)
mirostat_eta: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("mirostat_eta", 0.3),
examples=[0.3],
)
add_bos_token: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("add_bos_token", True)
)
ban_eos_token: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("ban_eos_token", False),
validation_alias=AliasChoices("ban_eos_token", "ignore_eos"),
description="Aliases: ignore_eos",
examples=[False],
)
skip_special_tokens: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("skip_special_tokens", True),
examples=[True],
)
logit_bias: Optional[Dict[int, float]] = Field(
default_factory=lambda: get_default_sampler_value("logit_bias"),
examples=[{"1": 10, "2": 50}],
)
negative_prompt: Optional[str] = Field(
default_factory=lambda: get_default_sampler_value("negative_prompt")
)
json_schema: Optional[object] = Field(
default_factory=lambda: get_default_sampler_value("json_schema"),
)
regex_pattern: Optional[str] = Field(
default_factory=lambda: get_default_sampler_value("regex_pattern"),
)
grammar_string: Optional[str] = Field(
default_factory=lambda: get_default_sampler_value("grammar_string"),
)
speculative_ngram: Optional[bool] = Field(
default_factory=lambda: get_default_sampler_value("speculative_ngram"),
)
cfg_scale: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("cfg_scale", 1.0),
validation_alias=AliasChoices("cfg_scale", "guidance_scale"),
description="Aliases: guidance_scale",
examples=[1.0],
)
max_temp: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("max_temp", 1.0),
validation_alias=AliasChoices("max_temp", "dynatemp_high"),
description="Aliases: dynatemp_high",
examples=[1.0],
ge=0,
)
min_temp: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("min_temp", 1.0),
validation_alias=AliasChoices("min_temp", "dynatemp_low"),
description="Aliases: dynatemp_low",
examples=[1.0],
ge=0,
)
temp_exponent: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("temp_exponent", 1.0),
validation_alias=AliasChoices("temp_exponent", "dynatemp_exponent"),
examples=[1.0],
ge=0,
)
@field_validator("top_k", mode="before")
def convert_top_k(cls, v):
"""Fixes instance if Top-K is -1."""
if v == -1:
logger.warning("Provided a top-k value of -1. Converting to 0 instead.")
return 0
return v
@field_validator("stop", "banned_strings", mode="before")
def convert_str_to_list(cls, v):
"""Convert single string to list of strings."""
if isinstance(v, str):
return [v]
return v
@field_validator("banned_tokens", "allowed_tokens", mode="before")
def convert_tokens_to_int_list(cls, v):
"""Convert comma-separated string of numbers to a list of integers."""
if isinstance(v, str):
return [int(x) for x in v.replace(" ", "").split(",") if x.isdigit()]
return v
@field_validator("dry_sequence_breakers", mode="before")
def parse_json_if_needed(cls, v):
"""Parse dry_sequence_breakers string to JSON array."""
if isinstance(v, str) and not v.startswith("["):
v = f"[{v}]"
try:
return json.loads(v) if isinstance(v, str) else v
except Exception:
logger.warning(
"Could not parse DRY sequence breakers. Using an empty array."
)
return [] # Return empty list if parsing fails
@field_validator("mirostat_mode", mode="before")
def convert_mirostat(cls, v, field_info):
"""Mirostat is enabled if mirostat_mode == 2."""
if v == 2:
field_info.data["mirostat"] = True
return v
@model_validator(mode="after")
def after_validate(self):
# FIXME: find a better way to register this
# Maybe make a function to assign values to the
# model if they do not exist post creation
apply_forced_sampler_overrides(self)
if self.min_temp and self.max_temp and self.min_temp > self.max_temp:
raise ValidationError("min temp cannot be more then max temp")
if self.min_tokens and self.max_tokens and self.min_tokens > self.max_tokens:
raise ValidationError("min tokens cannot be more then max tokens")
return self
class SamplerOverridesContainer(BaseModel):
selected_preset: Optional[str] = None
overrides: dict = {}
# Global for default overrides
overrides_container = SamplerOverridesContainer()
def overrides_from_dict(new_overrides: dict):
"""Wrapper function to update sampler overrides"""
if isinstance(new_overrides, dict):
overrides_container.overrides = filter_none_values(new_overrides)
else:
raise TypeError("New sampler overrides must be a dict!")
async def overrides_from_file(preset_name: str):
"""Fetches an override preset from a file"""
preset_path = pathlib.Path(f"sampler_overrides/{preset_name}.yml")
if preset_path.exists():
overrides_container.selected_preset = preset_path.stem
async with aiofiles.open(preset_path, "r", encoding="utf8") as raw_preset:
contents = await raw_preset.read()
# Create a temporary YAML parser
yaml = YAML(typ="safe")
preset = yaml.load(contents)
overrides_from_dict(preset)
logger.info("Applied sampler overrides from file.")
else:
error_message = (
f'Sampler override file named "{preset_name}" was not found. '
+ "Make sure it's located in the sampler_overrides folder."
)
raise FileNotFoundError(error_message)
def get_all_presets():
"""Fetches all sampler override presets from the overrides directory"""
override_directory = pathlib.Path("sampler_overrides")
preset_files = [file.stem for file in override_directory.glob("*.yml")]
return preset_files
# TODO: Maybe move these into the class
# Classmethods aren't recognized in pydantic default_factories
def get_default_sampler_value(key, fallback=None):
"""Gets an overridden default sampler value"""
default_value = unwrap(
deepcopy(overrides_container.overrides.get(key, {}).get("override")),
fallback,
)
return default_value
def apply_forced_sampler_overrides(params: BaseSamplerRequest):
"""Forcefully applies overrides if specified by the user"""
for var, value in overrides_container.overrides.items():
override = deepcopy(value.get("override"))
original_value = getattr(params, var, None)
# Force takes precedence over additive
# Additive only works on lists and doesn't remove duplicates
if override:
if unwrap(value.get("force"), False):
setattr(params, var, override)
elif (
unwrap(value.get("additive"), False)
and isinstance(override, list)
and isinstance(original_value, list)
):
setattr(params, var, override + original_value)