tabbyAPI-ollama/main.py
kingbri 5e54911cc8 API: Fix semaphore handling and chat completion errors
Chat completions previously always yielded a final packet to say that
a generation finished. However, this caused errors that a yield was
executed after GeneratorExit. This is correctly stated because python's
garbage collector can't clean up the generator after exiting due to the
finally block executing.

In addition, SSE endpoints close off the connection, so the finish packet
can only be yielded when the response has completed, so ignore yield on
exception.

Signed-off-by: kingbri <bdashore3@proton.me>
2023-12-04 15:51:25 -05:00

311 lines
11 KiB
Python

import uvicorn
import yaml
import pathlib
from auth import check_admin_key, check_api_key, load_auth_keys
from fastapi import FastAPI, Request, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from model import ModelContainer
from progress.bar import IncrementalBar
from generators import generate_with_semaphore
from OAI.types.completion import CompletionRequest
from OAI.types.chat_completion import ChatCompletionRequest
from OAI.types.model import ModelCard, ModelLoadRequest, ModelLoadResponse
from OAI.types.token import (
TokenEncodeRequest,
TokenEncodeResponse,
TokenDecodeRequest,
TokenDecodeResponse
)
from OAI.utils import (
create_completion_response,
get_model_list,
get_chat_completion_prompt,
create_chat_completion_response,
create_chat_completion_stream_chunk
)
from typing import Optional
from utils import get_generator_error, get_sse_packet, load_progress
from uuid import uuid4
app = FastAPI()
# Globally scoped variables. Undefined until initalized in main
model_container: Optional[ModelContainer] = None
config: dict = {}
def _check_model_container():
if model_container is None or model_container.model is None:
raise HTTPException(400, "No models are loaded.")
# ALlow CORS requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Model list endpoint
@app.get("/v1/models", dependencies=[Depends(check_api_key)])
@app.get("/v1/model/list", dependencies=[Depends(check_api_key)])
async def list_models():
model_config = config.get("model") or {}
if "model_dir" in model_config:
model_path = pathlib.Path(model_config["model_dir"])
else:
model_path = pathlib.Path("models")
draft_config = model_config.get("draft") or {}
draft_model_dir = draft_config.get("draft_model_dir")
models = get_model_list(model_path.resolve(), draft_model_dir)
if model_config.get("use_dummy_models") or False:
models.data.insert(0, ModelCard(id = "gpt-3.5-turbo"))
return models
# Currently loaded model endpoint
@app.get("/v1/model", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
@app.get("/v1/internal/model/info", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def get_current_model():
model_name = model_container.get_model_path().name
model_card = ModelCard(id = model_name)
return model_card
# Load model endpoint
@app.post("/v1/model/load", dependencies=[Depends(check_admin_key)])
async def load_model(data: ModelLoadRequest):
global model_container
if model_container and model_container.model:
raise HTTPException(400, "A model is already loaded! Please unload it first.")
if not data.name:
raise HTTPException(400, "model_name not found.")
model_config = config.get("model") or {}
model_path = pathlib.Path(model_config.get("model_dir") or "models")
model_path = model_path / data.name
load_data = data.dict()
if data.draft and "draft" in model_config:
draft_config = model_config.get("draft") or {}
if not data.draft.draft_model_name:
raise HTTPException(400, "draft_model_name was not found inside the draft object.")
load_data["draft_model_dir"] = draft_config.get("draft_model_dir") or "models"
if not model_path.exists():
raise HTTPException(400, "model_path does not exist. Check model_name?")
model_container = ModelContainer(model_path.resolve(), False, **load_data)
def generator():
global model_container
load_failed = False
model_type = "draft" if model_container.draft_enabled else "model"
load_status = model_container.load_gen(load_progress)
# TODO: Maybe create an erroring generator as a common utility function
try:
for (module, modules) in load_status:
if module == 0:
loading_bar: IncrementalBar = IncrementalBar("Modules", max = modules)
elif module == modules:
loading_bar.next()
loading_bar.finish()
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="finished"
)
yield get_sse_packet(response.json(ensure_ascii=False))
if model_container.draft_enabled:
model_type = "model"
else:
loading_bar.next()
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="processing"
)
yield get_sse_packet(response.json(ensure_ascii=False))
except Exception as e:
yield get_generator_error(e)
load_failed = True
finally:
if load_failed:
model_container.unload()
model_container = None
return StreamingResponse(generator(), media_type = "text/event-stream")
# Unload model endpoint
@app.get("/v1/model/unload", dependencies=[Depends(check_admin_key), Depends(_check_model_container)])
async def unload_model():
global model_container
model_container.unload()
model_container = None
# Encode tokens endpoint
@app.post("/v1/token/encode", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def encode_tokens(data: TokenEncodeRequest):
raw_tokens = model_container.get_tokens(data.text, None, **data.get_params())
# Have to use this if check otherwise Torch's tensors error out with a boolean issue
tokens = raw_tokens[0].tolist() if raw_tokens is not None else []
response = TokenEncodeResponse(tokens=tokens, length=len(tokens))
return response
# Decode tokens endpoint
@app.post("/v1/token/decode", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def decode_tokens(data: TokenDecodeRequest):
message = model_container.get_tokens(None, data.tokens, **data.get_params())
response = TokenDecodeResponse(text = message or "")
return response
# Completions endpoint
@app.post("/v1/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def generate_completion(request: Request, data: CompletionRequest):
model_path = model_container.get_model_path()
if isinstance(data.prompt, list):
data.prompt = "\n".join(data.prompt)
if data.stream:
async def generator():
try:
new_generation = model_container.generate_gen(data.prompt, **data.to_gen_params())
for (part, prompt_tokens, completion_tokens) in new_generation:
if await request.is_disconnected():
break
response = create_completion_response(part,
prompt_tokens,
completion_tokens,
model_path.name)
yield get_sse_packet(response.json(ensure_ascii=False))
except Exception as e:
yield get_generator_error(e)
return StreamingResponse(
generate_with_semaphore(generator),
media_type = "text/event-stream"
)
else:
response_text, prompt_tokens, completion_tokens = model_container.generate(data.prompt, **data.to_gen_params())
response = create_completion_response(response_text,
prompt_tokens,
completion_tokens,
model_path.name)
return response
# Chat completions endpoint
@app.post("/v1/chat/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def generate_chat_completion(request: Request, data: ChatCompletionRequest):
model_path = model_container.get_model_path()
if isinstance(data.messages, str):
prompt = data.messages
else:
prompt = get_chat_completion_prompt(model_path.name, data.messages)
if data.stream:
const_id = f"chatcmpl-{uuid4().hex}"
async def generator():
try:
raise ValueError("Error!")
new_generation = model_container.generate_gen(prompt, **data.to_gen_params())
for (part, _, _) in new_generation:
if await request.is_disconnected():
break
response = create_chat_completion_stream_chunk(
const_id,
part,
model_path.name
)
yield get_sse_packet(response.json(ensure_ascii=False))
# Yield a finish response on successful generation
finish_response = create_chat_completion_stream_chunk(
const_id,
finish_reason = "stop"
)
yield get_sse_packet(finish_response.json(ensure_ascii=False))
except Exception as e:
yield get_generator_error(e)
return StreamingResponse(
generate_with_semaphore(generator),
media_type = "text/event-stream"
)
else:
response_text, prompt_tokens, completion_tokens = model_container.generate(prompt, **data.to_gen_params())
response = create_chat_completion_response(response_text,
prompt_tokens,
completion_tokens,
model_path.name)
return response
if __name__ == "__main__":
# Initialize auth keys
load_auth_keys()
# Load from YAML config. Possibly add a config -> kwargs conversion function
try:
with open('config.yml', 'r', encoding = "utf8") as config_file:
config = yaml.safe_load(config_file) or {}
except Exception as e:
print(
"The YAML config couldn't load because of the following error:",
f"\n\n{e}",
"\n\nTabbyAPI will start anyway and not parse this config file."
)
config = {}
# If an initial model name is specified, create a container and load the model
model_config = config.get("model") or {}
if "model_name" in model_config:
model_path = pathlib.Path(model_config.get("model_dir") or "models")
model_path = model_path / model_config.get("model_name")
model_container = ModelContainer(model_path.resolve(), False, **model_config)
load_status = model_container.load_gen(load_progress)
for (module, modules) in load_status:
if module == 0:
loading_bar: IncrementalBar = IncrementalBar("Modules", max = modules)
elif module == modules:
loading_bar.next()
loading_bar.finish()
else:
loading_bar.next()
network_config = config.get("network") or {}
uvicorn.run(
app,
host=network_config.get("host", "127.0.0.1"),
port=network_config.get("port", 5000),
log_level="debug"
)