tabbyAPI-ollama/main.py
kingbri 5a2de30066 Tree: Update to cleanup globals
Use the module singleton pattern to share global state. This can also
be a modified version of the Global Object Pattern. The main reason
this pattern is used is for ease of use when handling global state
rather than adding extra dependencies for a DI parameter.

Signed-off-by: kingbri <bdashore3@proton.me>
2024-03-12 23:59:30 -04:00

740 lines
23 KiB
Python

"""The main tabbyAPI module. Contains the FastAPI server and endpoints."""
import asyncio
import os
import pathlib
import signal
import sys
import time
import threading
from sse_starlette import EventSourceResponse
import uvicorn
from asyncio import CancelledError
from typing import Optional
from uuid import uuid4
from jinja2 import TemplateError
from fastapi import FastAPI, Depends, HTTPException, Request
from fastapi.concurrency import run_in_threadpool
from fastapi.middleware.cors import CORSMiddleware
from functools import partial
from loguru import logger
from backends.exllamav2.utils import check_exllama_version
from common import config, model, gen_logging, sampling
from common.args import convert_args_to_dict, init_argparser
from common.auth import check_admin_key, check_api_key, load_auth_keys
from common.generators import (
call_with_semaphore,
generate_with_semaphore,
release_semaphore,
)
from common.logger import UVICORN_LOG_CONFIG, setup_logger
from common.templating import (
get_all_templates,
get_prompt_from_template,
get_template_from_file,
)
from common.utils import (
get_generator_error,
handle_request_error,
is_port_in_use,
unwrap,
)
from OAI.types.completion import CompletionRequest
from OAI.types.chat_completion import ChatCompletionRequest
from OAI.types.lora import LoraCard, LoraList, LoraLoadRequest, LoraLoadResponse
from OAI.types.model import (
ModelCard,
ModelLoadRequest,
ModelLoadResponse,
ModelCardParameters,
)
from OAI.types.sampler_overrides import SamplerOverrideSwitchRequest
from OAI.types.template import TemplateList, TemplateSwitchRequest
from OAI.types.token import (
TokenEncodeRequest,
TokenEncodeResponse,
TokenDecodeRequest,
TokenDecodeResponse,
)
from OAI.utils.completion import (
create_completion_response,
create_chat_completion_response,
create_chat_completion_stream_chunk,
)
from OAI.utils.model import get_model_list
from OAI.utils.lora import get_lora_list
app = FastAPI(
title="TabbyAPI",
summary="An OAI compatible exllamav2 API that's both lightweight and fast",
description=(
"This docs page is not meant to send requests! Please use a service "
"like Postman or a frontend UI."
),
)
# ALlow CORS requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
async def check_model_container():
"""FastAPI depends that checks if a model isn't loaded or currently loading."""
if model.container is None or not (
model.container.model_is_loading or model.container.model_loaded
):
error_message = handle_request_error(
"No models are currently loaded.",
exc_info=False,
).error.message
raise HTTPException(400, error_message)
# Model list endpoint
@app.get("/v1/models", dependencies=[Depends(check_api_key)])
@app.get("/v1/model/list", dependencies=[Depends(check_api_key)])
async def list_models():
"""Lists all models in the model directory."""
model_config = config.model_config()
model_dir = unwrap(model_config.get("model_dir"), "models")
model_path = pathlib.Path(model_dir)
draft_model_dir = config.draft_model_config().get("draft_model_dir")
models = get_model_list(model_path.resolve(), draft_model_dir)
if unwrap(model_config.get("use_dummy_models"), False):
models.data.insert(0, ModelCard(id="gpt-3.5-turbo"))
return models
# Currently loaded model endpoint
@app.get(
"/v1/model",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def get_current_model():
"""Returns the currently loaded model."""
model_params = model.container.get_model_parameters()
draft_model_params = model_params.pop("draft", {})
if draft_model_params:
model_params["draft"] = ModelCard(
id=unwrap(draft_model_params.get("name"), "unknown"),
parameters=ModelCardParameters.model_validate(draft_model_params),
)
else:
draft_model_params = None
model_card = ModelCard(
id=unwrap(model_params.pop("name", None), "unknown"),
parameters=ModelCardParameters.model_validate(model_params),
logging=gen_logging.PREFERENCES,
)
if draft_model_params:
draft_card = ModelCard(
id=unwrap(draft_model_params.pop("name", None), "unknown"),
parameters=ModelCardParameters.model_validate(draft_model_params),
)
model_card.parameters.draft = draft_card
return model_card
@app.get("/v1/model/draft/list", dependencies=[Depends(check_api_key)])
async def list_draft_models():
"""Lists all draft models in the model directory."""
draft_model_dir = unwrap(
config.draft_model_config().get("draft_model_dir"), "models"
)
draft_model_path = pathlib.Path(draft_model_dir)
models = get_model_list(draft_model_path.resolve())
return models
# Load model endpoint
@app.post("/v1/model/load", dependencies=[Depends(check_admin_key)])
async def load_model(request: Request, data: ModelLoadRequest):
"""Loads a model into the model container."""
# Verify request parameters
if not data.name:
raise HTTPException(400, "A model name was not provided.")
model_path = pathlib.Path(unwrap(config.model_config().get("model_dir"), "models"))
model_path = model_path / data.name
load_data = data.model_dump()
if data.draft:
if not data.draft.draft_model_name:
raise HTTPException(
400, "draft_model_name was not found inside the draft object."
)
load_data["draft"]["draft_model_dir"] = unwrap(
config.draft_model_config().get("draft_model_dir"), "models"
)
if not model_path.exists():
raise HTTPException(400, "model_path does not exist. Check model_name?")
async def generator():
"""Request generation wrapper for the loading process."""
load_status = model.load_model_gen(model_path, **load_data)
try:
async for module, modules, model_type in load_status:
if await request.is_disconnected():
release_semaphore()
logger.error(
"Model load cancelled by user. "
"Please make sure to run unload to free up resources."
)
return
if module != 0:
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="processing",
)
yield response.model_dump_json()
if module == modules:
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="finished",
)
yield response.model_dump_json()
except CancelledError:
logger.error(
"Model load cancelled by user. "
"Please make sure to run unload to free up resources."
)
except Exception as exc:
yield get_generator_error(str(exc))
# Determine whether to use or skip the queue
if data.skip_queue:
logger.warning(
"Model load request is skipping the completions queue. "
"Unexpected results may occur."
)
generator_callback = generator
else:
generator_callback = partial(generate_with_semaphore, generator)
return EventSourceResponse(generator_callback())
# Unload model endpoint
@app.post(
"/v1/model/unload",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def unload_model():
"""Unloads the currently loaded model."""
await model.unload_model()
@app.get("/v1/templates", dependencies=[Depends(check_api_key)])
@app.get("/v1/template/list", dependencies=[Depends(check_api_key)])
async def get_templates():
templates = get_all_templates()
template_strings = list(map(lambda template: template.stem, templates))
return TemplateList(data=template_strings)
@app.post(
"/v1/template/switch",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def switch_template(data: TemplateSwitchRequest):
"""Switch the currently loaded template"""
if not data.name:
raise HTTPException(400, "New template name not found.")
try:
template = get_template_from_file(data.name)
model.container.prompt_template = template
except FileNotFoundError as e:
raise HTTPException(400, "Template does not exist. Check the name?") from e
@app.post(
"/v1/template/unload",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def unload_template():
"""Unloads the currently selected template"""
model.container.prompt_template = None
# Sampler override endpoints
@app.get("/v1/sampling/overrides", dependencies=[Depends(check_api_key)])
@app.get("/v1/sampling/override/list", dependencies=[Depends(check_api_key)])
async def list_sampler_overrides():
"""API wrapper to list all currently applied sampler overrides"""
return sampling.overrides
@app.post(
"/v1/sampling/override/switch",
dependencies=[Depends(check_admin_key)],
)
async def switch_sampler_override(data: SamplerOverrideSwitchRequest):
"""Switch the currently loaded override preset"""
if data.preset:
try:
sampling.overrides_from_file(data.preset)
except FileNotFoundError as e:
raise HTTPException(
400, "Sampler override preset does not exist. Check the name?"
) from e
elif data.overrides:
sampling.overrides_from_dict(data.overrides)
else:
raise HTTPException(
400, "A sampler override preset or dictionary wasn't provided."
)
@app.post(
"/v1/sampling/override/unload",
dependencies=[Depends(check_admin_key)],
)
async def unload_sampler_override():
"""Unloads the currently selected override preset"""
sampling.overrides_from_dict({})
# Lora list endpoint
@app.get("/v1/loras", dependencies=[Depends(check_api_key)])
@app.get("/v1/lora/list", dependencies=[Depends(check_api_key)])
async def get_all_loras():
"""Lists all LoRAs in the lora directory."""
lora_path = pathlib.Path(unwrap(config.lora_config().get("lora_dir"), "loras"))
loras = get_lora_list(lora_path.resolve())
return loras
# Currently loaded loras endpoint
@app.get(
"/v1/lora",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def get_active_loras():
"""Returns the currently loaded loras."""
active_loras = LoraList(
data=list(
map(
lambda lora: LoraCard(
id=pathlib.Path(lora.lora_path).parent.name,
scaling=lora.lora_scaling * lora.lora_r / lora.lora_alpha,
),
model.container.active_loras,
)
)
)
return active_loras
# Load lora endpoint
@app.post(
"/v1/lora/load",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def load_lora(data: LoraLoadRequest):
"""Loads a LoRA into the model container."""
if not data.loras:
raise HTTPException(400, "List of loras to load is not found.")
lora_dir = pathlib.Path(unwrap(config.lora_config().get("lora_dir"), "loras"))
if not lora_dir.exists():
raise HTTPException(
400,
"A parent lora directory does not exist. Check your config.yml?",
)
# Clean-up existing loras if present
def load_loras_internal():
if len(model.container.active_loras) > 0:
unload_loras()
result = model.container.load_loras(lora_dir, **data.model_dump())
return LoraLoadResponse(
success=unwrap(result.get("success"), []),
failure=unwrap(result.get("failure"), []),
)
internal_callback = partial(run_in_threadpool, load_loras_internal)
# Determine whether to skip the queue
if data.skip_queue:
logger.warning(
"Lora load request is skipping the completions queue. "
"Unexpected results may occur."
)
return await internal_callback()
else:
return await call_with_semaphore(internal_callback)
# Unload lora endpoint
@app.post(
"/v1/lora/unload",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def unload_loras():
"""Unloads the currently loaded loras."""
model.container.unload(loras_only=True)
# Encode tokens endpoint
@app.post(
"/v1/token/encode",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def encode_tokens(data: TokenEncodeRequest):
"""Encodes a string into tokens."""
raw_tokens = model.container.encode_tokens(data.text, **data.get_params())
tokens = unwrap(raw_tokens, [])
response = TokenEncodeResponse(tokens=tokens, length=len(tokens))
return response
# Decode tokens endpoint
@app.post(
"/v1/token/decode",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def decode_tokens(data: TokenDecodeRequest):
"""Decodes tokens into a string."""
message = model.container.decode_tokens(data.tokens, **data.get_params())
response = TokenDecodeResponse(text=unwrap(message, ""))
return response
# Completions endpoint
@app.post(
"/v1/completions",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def generate_completion(request: Request, data: CompletionRequest):
"""Generates a completion from a prompt."""
model_path = model.container.get_model_path()
if isinstance(data.prompt, list):
data.prompt = "\n".join(data.prompt)
disable_request_streaming = unwrap(
config.developer_config().get("disable_request_streaming"), False
)
if data.stream and not disable_request_streaming:
async def generator():
try:
new_generation = model.container.generate_gen(
data.prompt, **data.to_gen_params()
)
for generation in new_generation:
# Get out if the request gets disconnected
if await request.is_disconnected():
release_semaphore()
logger.error("Completion generation cancelled by user.")
return
response = create_completion_response(generation, model_path.name)
yield response.model_dump_json()
# Yield a finish response on successful generation
yield "[DONE]"
except Exception:
yield get_generator_error(
"Completion aborted. Please check the server console."
)
return EventSourceResponse(generate_with_semaphore(generator))
try:
generation = await call_with_semaphore(
partial(
run_in_threadpool,
model.container.generate,
data.prompt,
**data.to_gen_params(),
)
)
response = create_completion_response(generation, model_path.name)
return response
except Exception as exc:
error_message = handle_request_error(
"Completion aborted. Maybe the model was unloaded? "
"Please check the server console."
).error.message
# Server error if there's a generation exception
raise HTTPException(503, error_message) from exc
# Chat completions endpoint
@app.post(
"/v1/chat/completions",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def generate_chat_completion(request: Request, data: ChatCompletionRequest):
"""Generates a chat completion from a prompt."""
if model.container.prompt_template is None:
raise HTTPException(
422,
"This endpoint is disabled because a prompt template is not set.",
)
model_path = model.container.get_model_path()
if isinstance(data.messages, str):
prompt = data.messages
else:
try:
special_tokens_dict = model.container.get_special_tokens(
unwrap(data.add_bos_token, True),
unwrap(data.ban_eos_token, False),
)
prompt = get_prompt_from_template(
data.messages,
model.container.prompt_template,
data.add_generation_prompt,
special_tokens_dict,
)
except KeyError as exc:
raise HTTPException(
400,
"Could not find a Conversation from prompt template "
f"'{model.container.prompt_template.name}'. "
"Check your spelling?",
) from exc
except TemplateError as exc:
raise HTTPException(
400,
f"TemplateError: {str(exc)}",
) from exc
disable_request_streaming = unwrap(
config.developer_config().get("disable_request_streaming"), False
)
if data.stream and not disable_request_streaming:
const_id = f"chatcmpl-{uuid4().hex}"
async def generator():
"""Generator for the generation process."""
try:
new_generation = model.container.generate_gen(
prompt, **data.to_gen_params()
)
for generation in new_generation:
# Get out if the request gets disconnected
if await request.is_disconnected():
release_semaphore()
logger.error("Chat completion generation cancelled by user.")
return
response = create_chat_completion_stream_chunk(
const_id, generation, model_path.name
)
yield response.model_dump_json()
# Yield a finish response on successful generation
finish_response = create_chat_completion_stream_chunk(
const_id, finish_reason="stop"
)
yield finish_response.model_dump_json()
except Exception:
yield get_generator_error(
"Chat completion aborted. Please check the server console."
)
return EventSourceResponse(generate_with_semaphore(generator))
try:
generation = await call_with_semaphore(
partial(
run_in_threadpool,
model.container.generate,
prompt,
**data.to_gen_params(),
)
)
response = create_chat_completion_response(generation, model_path.name)
return response
except Exception as exc:
error_message = handle_request_error(
"Chat completion aborted. Maybe the model was unloaded? "
"Please check the server console."
).error.message
# Server error if there's a generation exception
raise HTTPException(503, error_message) from exc
def start_api(host: str, port: int):
"""Isolated function to start the API server"""
# TODO: Move OAI API to a separate folder
logger.info(f"Developer documentation: http://{host}:{port}/redoc")
logger.info(f"Completions: http://{host}:{port}/v1/completions")
logger.info(f"Chat completions: http://{host}:{port}/v1/chat/completions")
uvicorn.run(
app,
host=host,
port=port,
log_config=UVICORN_LOG_CONFIG,
)
def signal_handler(*_):
logger.warning("Shutdown signal called. Exiting gracefully.")
sys.exit(0)
async def entrypoint(args: Optional[dict] = None):
"""Entry function for program startup"""
setup_logger()
# Set up signal aborting
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
# Load from YAML config
config.from_file(pathlib.Path("config.yml"))
# Parse and override config from args
if args is None:
parser = init_argparser()
args = convert_args_to_dict(parser.parse_args(), parser)
config.from_args(args)
developer_config = config.developer_config()
# Check exllamav2 version and give a descriptive error if it's too old
# Skip if launching unsafely
if unwrap(developer_config.get("unsafe_launch"), False):
logger.warning(
"UNSAFE: Skipping ExllamaV2 version check.\n"
"If you aren't a developer, please keep this off!"
)
else:
check_exllama_version()
# Enable CUDA malloc backend
if unwrap(developer_config.get("cuda_malloc_backend"), False):
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "backend:cudaMallocAsync"
logger.warning("Enabled the experimental CUDA malloc backend.")
network_config = config.network_config()
host = unwrap(network_config.get("host"), "127.0.0.1")
port = unwrap(network_config.get("port"), 5000)
# Check if the port is available and attempt to bind a fallback
if is_port_in_use(port):
fallback_port = port + 1
if is_port_in_use(fallback_port):
logger.error(
f"Ports {port} and {fallback_port} are in use by different services.\n"
"Please free up those ports or specify a different one.\n"
"Exiting."
)
return
else:
logger.warning(
f"Port {port} is currently in use. Switching to {fallback_port}."
)
port = fallback_port
# Initialize auth keys
load_auth_keys(unwrap(network_config.get("disable_auth"), False))
# Override the generation log options if given
log_config = config.gen_logging_config()
if log_config:
gen_logging.update_from_dict(log_config)
gen_logging.broadcast_status()
# Set sampler parameter overrides if provided
sampling_config = config.sampling_config()
sampling_override_preset = sampling_config.get("override_preset")
if sampling_override_preset:
try:
sampling.overrides_from_file(sampling_override_preset)
except FileNotFoundError as e:
logger.warning(str(e))
# If an initial model name is specified, create a container
# and load the model
model_config = config.model_config()
model_name = model_config.get("model_name")
if model_name:
model_path = pathlib.Path(unwrap(model_config.get("model_dir"), "models"))
model_path = model_path / model_name
await model.load_model(model_path.resolve(), **model_config)
# Load loras after loading the model
lora_config = config.lora_config()
if lora_config.get("loras"):
lora_dir = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras"))
model.container.load_loras(lora_dir.resolve(), **lora_config)
# TODO: Replace this with abortables, async via producer consumer, or something else
api_thread = threading.Thread(target=partial(start_api, host, port), daemon=True)
api_thread.start()
# Keep the program alive
while api_thread.is_alive():
time.sleep(0.5)
if __name__ == "__main__":
asyncio.run(entrypoint())