tabbyAPI-ollama/main.py
kingbri 56f9b1d1a8 API: Add generator error handling
If the generator errors, there's no proper handling to send an error
packet and close the connection.

This is especially important for unloading models if the load fails
at any stage to reclaim a user's VRAM. Raising an exception caused
the model_container object to lock and not get freed by the GC.

This made sense to propegate SSE errors across all generator functions
rather than relying on abort signals.

Signed-off-by: kingbri <bdashore3@proton.me>
2023-11-30 00:37:48 -05:00

284 lines
10 KiB
Python

import uvicorn
import yaml
import pathlib
from auth import check_admin_key, check_api_key, load_auth_keys
from fastapi import FastAPI, Request, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from model import ModelContainer
from progress.bar import IncrementalBar
from sse_starlette import EventSourceResponse
from OAI.types.completion import CompletionRequest
from OAI.types.chat_completion import ChatCompletionRequest
from OAI.types.model import ModelCard, ModelLoadRequest, ModelLoadResponse
from OAI.types.token import (
TokenEncodeRequest,
TokenEncodeResponse,
TokenDecodeRequest,
TokenDecodeResponse
)
from OAI.utils import (
create_completion_response,
get_model_list,
get_chat_completion_prompt,
create_chat_completion_response,
create_chat_completion_stream_chunk
)
from typing import Optional
from utils import get_generator_error, load_progress
from uuid import uuid4
app = FastAPI()
# Globally scoped variables. Undefined until initalized in main
model_container: Optional[ModelContainer] = None
config: dict = {}
def _check_model_container():
if model_container is None or model_container.model is None:
raise HTTPException(400, "No models are loaded.")
# ALlow CORS requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Model list endpoint
@app.get("/v1/models", dependencies=[Depends(check_api_key)])
@app.get("/v1/model/list", dependencies=[Depends(check_api_key)])
async def list_models():
model_config = config.get("model") or {}
if "model_dir" in model_config:
model_path = pathlib.Path(model_config["model_dir"])
else:
model_path = pathlib.Path("models")
draft_config = model_config.get("draft") or {}
draft_model_dir = draft_config.get("draft_model_dir")
models = get_model_list(model_path.resolve(), draft_model_dir)
return models
# Currently loaded model endpoint
@app.get("/v1/model", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
@app.get("/v1/internal/model/info", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def get_current_model():
model_name = model_container.get_model_path().name
model_card = ModelCard(id = model_name)
return model_card
# Load model endpoint
@app.post("/v1/model/load", dependencies=[Depends(check_admin_key)])
async def load_model(data: ModelLoadRequest):
global model_container
if model_container and model_container.model:
raise HTTPException(400, "A model is already loaded! Please unload it first.")
if not data.name:
raise HTTPException(400, "model_name not found.")
model_config = config.get("model") or {}
model_path = pathlib.Path(model_config.get("model_dir") or "models")
model_path = model_path / data.name
load_data = data.dict()
if data.draft and "draft" in model_config:
draft_config = model_config.get("draft") or {}
if not data.draft.draft_model_name:
raise HTTPException(400, "draft_model_name was not found inside the draft object.")
load_data["draft_model_dir"] = draft_config.get("draft_model_dir") or "models"
if not model_path.exists():
raise HTTPException(400, "model_path does not exist. Check model_name?")
model_container = ModelContainer(model_path.resolve(), False, **load_data)
def generator():
global model_container
load_failed = False
model_type = "draft" if model_container.draft_enabled else "model"
load_status = model_container.load_gen(load_progress)
# TODO: Maybe create an erroring generator as a common utility function
try:
for (module, modules) in load_status:
if module == 0:
loading_bar: IncrementalBar = IncrementalBar("Modules", max = modules)
elif module == modules:
loading_bar.next()
loading_bar.finish()
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="finished"
)
yield response.json(ensure_ascii=False)
if model_container.draft_enabled:
model_type = "model"
else:
loading_bar.next()
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="processing"
)
yield response.json(ensure_ascii=False)
except Exception as e:
yield get_generator_error(e)
load_failed = True
finally:
if load_failed:
model_container.unload()
model_container = None
return EventSourceResponse(generator())
# Unload model endpoint
@app.get("/v1/model/unload", dependencies=[Depends(check_admin_key), Depends(_check_model_container)])
async def unload_model():
global model_container
model_container.unload()
model_container = None
# Encode tokens endpoint
@app.post("/v1/token/encode", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def encode_tokens(data: TokenEncodeRequest):
raw_tokens = model_container.get_tokens(data.text, None, **data.get_params())
# Have to use this if check otherwise Torch's tensors error out with a boolean issue
tokens = raw_tokens[0].tolist() if raw_tokens is not None else []
response = TokenEncodeResponse(tokens=tokens, length=len(tokens))
return response
# Decode tokens endpoint
@app.post("/v1/token/decode", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def decode_tokens(data: TokenDecodeRequest):
message = model_container.get_tokens(None, data.tokens, **data.get_params())
response = TokenDecodeResponse(text = message or "")
return response
# Completions endpoint
@app.post("/v1/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def generate_completion(request: Request, data: CompletionRequest):
model_path = model_container.get_model_path()
if isinstance(data.prompt, list):
data.prompt = "\n".join(data.prompt)
if data.stream:
async def generator():
try:
new_generation = model_container.generate_gen(data.prompt, **data.to_gen_params())
for part in new_generation:
if await request.is_disconnected():
break
response = create_completion_response(part, model_path.name)
yield response.json(ensure_ascii=False)
except Exception as e:
yield get_generator_error(e)
return EventSourceResponse(generator())
else:
response_text = model_container.generate(data.prompt, **data.to_gen_params())
response = create_completion_response(response_text, model_path.name)
return response
# Chat completions endpoint
@app.post("/v1/chat/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def generate_chat_completion(request: Request, data: ChatCompletionRequest):
model_path = model_container.get_model_path()
if isinstance(data.messages, str):
prompt = data.messages
else:
prompt = get_chat_completion_prompt(model_path.name, data.messages)
if data.stream:
const_id = f"chatcmpl-{uuid4().hex}"
async def generator():
try:
new_generation = model_container.generate_gen(prompt, **data.to_gen_params())
for part in new_generation:
if await request.is_disconnected():
break
response = create_chat_completion_stream_chunk(
const_id,
part,
model_path.name
)
yield response.json(ensure_ascii=False)
except Exception as e:
yield get_generator_error(e)
return EventSourceResponse(generator())
else:
response_text = model_container.generate(prompt, **data.to_gen_params())
response = create_chat_completion_response(response_text, model_path.name)
return response
if __name__ == "__main__":
# Initialize auth keys
load_auth_keys()
# Load from YAML config. Possibly add a config -> kwargs conversion function
try:
with open('config.yml', 'r', encoding = "utf8") as config_file:
config = yaml.safe_load(config_file) or {}
except Exception as e:
print(
"The YAML config couldn't load because of the following error:",
f"\n\n{e}",
"\n\nTabbyAPI will start anyway and not parse this config file."
)
config = {}
# If an initial model name is specified, create a container and load the model
model_config = config.get("model") or {}
if "model_name" in model_config:
model_path = pathlib.Path(model_config.get("model_dir") or "models")
model_path = model_path / model_config.get("model_name")
model_container = ModelContainer(model_path.resolve(), False, **model_config)
load_status = model_container.load_gen(load_progress)
for (module, modules) in load_status:
if module == 0:
loading_bar: IncrementalBar = IncrementalBar("Modules", max = modules)
elif module == modules:
loading_bar.next()
loading_bar.finish()
else:
loading_bar.next()
network_config = config.get("network") or {}
uvicorn.run(
app,
host=network_config.get("host", "127.0.0.1"),
port=network_config.get("port", 5000),
log_level="debug"
)