tabbyAPI-ollama/common/config_models.py
kingbri 4c8bb42ec1 Config: Reorder models
It makes sense for the LLM model groups to be clustered around
each other with the least used groups towards the bottom.

Signed-off-by: kingbri <bdashore3@proton.me>
2024-09-16 00:55:14 -04:00

458 lines
15 KiB
Python

from inspect import getdoc
from pathlib import Path
from pydantic import AliasChoices, BaseModel, ConfigDict, Field, PrivateAttr
from textwrap import dedent
from typing import List, Literal, Optional, Union
from pydantic_core import PydanticUndefined
CACHE_SIZES = Literal["FP16", "Q8", "Q6", "Q4"]
class Metadata(BaseModel):
"""metadata model for config options"""
include_in_config: Optional[bool] = Field(True)
class BaseConfigModel(BaseModel):
"""Base model for config models with added metadata"""
_metadata: Metadata = PrivateAttr(Metadata())
class ConfigOverrideConfig(BaseConfigModel):
"""Model for overriding a provided config file."""
# TODO: convert this to a pathlib.path?
config: Optional[str] = Field(
None, description=("Path to an overriding config.yml file")
)
_metadata: Metadata = PrivateAttr(Metadata(include_in_config=False))
class UtilityActions(BaseConfigModel):
"""Model used for arg actions."""
# YAML export options
export_config: Optional[str] = Field(
None, description="generate a template config file"
)
config_export_path: Optional[Path] = Field(
"config_sample.yml", description="path to export configuration file to"
)
# OpenAPI JSON export options
export_openapi: Optional[bool] = Field(
False, description="export openapi schema files"
)
openapi_export_path: Optional[Path] = Field(
"openapi.json", description="path to export openapi schema to"
)
_metadata: Metadata = PrivateAttr(Metadata(include_in_config=False))
class NetworkConfig(BaseConfigModel):
"""Options for networking"""
host: Optional[str] = Field("127.0.0.1", description=("The IP to host on"))
port: Optional[int] = Field(5000, description=("The port to host on"))
disable_auth: Optional[bool] = Field(
False, description=("Disable HTTP token authentication with requests")
)
send_tracebacks: Optional[bool] = Field(
False,
description=("Decide whether to send error tracebacks over the API"),
)
api_servers: Optional[List[Literal["OAI", "Kobold"]]] = Field(
default_factory=list,
description=("API servers to enable. Options: (OAI, Kobold)"),
)
# TODO: Migrate config.yml to have the log_ prefix
# This is a breaking change.
class LoggingConfig(BaseConfigModel):
"""Options for logging"""
log_prompt: Optional[bool] = Field(
False,
description=("Enable prompt logging"),
validation_alias=AliasChoices("log_prompt", "prompt"),
)
log_generation_params: Optional[bool] = Field(
False,
description=("Enable generation parameter logging"),
validation_alias=AliasChoices("log_generation_params", "generation_params"),
)
log_requests: Optional[bool] = Field(
False,
description=("Enable request logging"),
validation_alias=AliasChoices("log_requests", "requests"),
)
class ModelConfig(BaseConfigModel):
"""
Options for model overrides and loading
Please read the comments to understand how arguments are handled
between initial and API loads
"""
# TODO: convert this to a pathlib.path?
model_dir: str = Field(
"models",
description=(
"Overrides the directory to look for models (default: models). Windows "
"users, do NOT put this path in quotes."
),
)
use_dummy_models: Optional[bool] = Field(
False,
description=(
"Sends dummy model names when the models endpoint is queried. Enable this "
"if looking for specific OAI models."
),
)
model_name: Optional[str] = Field(
None,
description=(
"An initial model to load. Make sure the model is located in the model "
"directory! REQUIRED: This must be filled out to load a model on startup."
),
)
use_as_default: List[str] = Field(
default_factory=list,
description=(
"Names of args to use as a default fallback for API load requests "
"(default: []). Example: ['max_seq_len', 'cache_mode']"
),
)
max_seq_len: Optional[int] = Field(
None,
description=(
"Max sequence length. Fetched from the model's base sequence length in "
"config.json by default."
),
ge=0,
)
override_base_seq_len: Optional[int] = Field(
None,
description=(
"Overrides base model context length. WARNING: Only use this if the "
"model's base sequence length is incorrect."
),
ge=0,
)
tensor_parallel: Optional[bool] = Field(
False,
description=(
"Load model with tensor parallelism. Fallback to autosplit if GPU split "
"isn't provided."
),
)
gpu_split_auto: Optional[bool] = Field(
True,
description=(
"Automatically allocate resources to GPUs (default: True). Not parsed for "
"single GPU users."
),
)
autosplit_reserve: List[int] = Field(
[96],
description=(
"Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0). "
"Represented as an array of MB per GPU."
),
)
gpu_split: List[float] = Field(
default_factory=list,
description=(
"An integer array of GBs of VRAM to split between GPUs (default: []). "
"Used with tensor parallelism."
),
)
rope_scale: Optional[float] = Field(
1.0,
description=(
"Rope scale (default: 1.0). Same as compress_pos_emb. Only use if the "
"model was trained on long context with rope."
),
)
rope_alpha: Optional[Union[float, Literal["auto"]]] = Field(
1.0,
description=(
"Rope alpha (default: 1.0). Same as alpha_value. Set to 'auto' to auto- "
"calculate."
),
)
cache_mode: Optional[CACHE_SIZES] = Field(
"FP16",
description=(
"Enable different cache modes for VRAM savings (default: FP16). Possible "
f"values: {str(CACHE_SIZES)[15:-1]}"
),
)
cache_size: Optional[int] = Field(
None,
description=(
"Size of the prompt cache to allocate (default: max_seq_len). Must be a "
"multiple of 256."
),
multiple_of=256,
gt=0,
)
chunk_size: Optional[int] = Field(
2048,
description=(
"Chunk size for prompt ingestion (default: 2048). A lower value reduces "
"VRAM usage but decreases ingestion speed."
),
gt=0,
)
max_batch_size: Optional[int] = Field(
None,
description=(
"Set the maximum number of prompts to process at one time (default: "
"None/Automatic). Automatically calculated if left blank."
),
ge=1,
)
prompt_template: Optional[str] = Field(
None,
description=(
"Set the prompt template for this model. If empty, attempts to look for "
"the model's chat template."
),
)
num_experts_per_token: Optional[int] = Field(
None,
description=(
"Number of experts to use per token. Fetched from the model's "
"config.json. For MoE models only."
),
ge=1,
)
fasttensors: Optional[bool] = Field(
False,
description=(
"Enables fasttensors to possibly increase model loading speeds (default: "
"False)."
),
)
_metadata: Metadata = PrivateAttr(Metadata())
model_config = ConfigDict(protected_namespaces=())
class DraftModelConfig(BaseConfigModel):
"""
Options for draft models (speculative decoding)
This will use more VRAM!
"""
# TODO: convert this to a pathlib.path?
draft_model_dir: Optional[str] = Field(
"models",
description=(
"Overrides the directory to look for draft models (default: models)"
),
)
draft_model_name: Optional[str] = Field(
None,
description=(
"An initial draft model to load. Ensure the model is in the model"
"directory."
),
)
draft_rope_scale: Optional[float] = Field(
1.0,
description=(
"Rope scale for draft models (default: 1.0). Same as compress_pos_emb. "
"Use if the draft model was trained on long context with rope."
),
)
draft_rope_alpha: Optional[float] = Field(
None,
description=(
"Rope alpha for draft models (default: None). Same as alpha_value. Leave "
"blank to auto-calculate the alpha value."
),
)
draft_cache_mode: Optional[CACHE_SIZES] = Field(
"FP16",
description=(
"Cache mode for draft models to save VRAM (default: FP16). Possible "
f"values: {str(CACHE_SIZES)[15:-1]}"
),
)
class LoraInstanceModel(BaseConfigModel):
"""Model representing an instance of a Lora."""
name: str = Field(..., description=("Name of the LoRA model"))
scaling: float = Field(
1.0,
description=("Scaling factor for the LoRA model (default: 1.0)"),
ge=0,
)
class LoraConfig(BaseConfigModel):
"""Options for Loras"""
# TODO: convert this to a pathlib.path?
lora_dir: Optional[str] = Field(
"loras", description=("Directory to look for LoRAs (default: 'loras')")
)
loras: Optional[List[LoraInstanceModel]] = Field(
None,
description=(
"List of LoRAs to load and associated scaling factors (default scaling: "
"1.0)"
),
)
class EmbeddingsConfig(BaseConfigModel):
"""
Options for embedding models and loading.
NOTE: Embeddings requires the "extras" feature to be installed
Install it via "pip install .[extras]"
"""
# TODO: convert this to a pathlib.path?
embedding_model_dir: Optional[str] = Field(
"models",
description=(
"Overrides directory to look for embedding models (default: models)"
),
)
embeddings_device: Optional[Literal["cpu", "auto", "cuda"]] = Field(
"cpu",
description=(
"Device to load embedding models on (default: cpu). Possible values: cpu, "
"auto, cuda. If using an AMD GPU, set this value to 'cuda'."
),
)
embedding_model_name: Optional[str] = Field(
None, description=("The embeddings model to load")
)
class SamplingConfig(BaseConfigModel):
"""Options for Sampling"""
override_preset: Optional[str] = Field(
None, description=("Select a sampler override preset")
)
class DeveloperConfig(BaseConfigModel):
"""Options for development and experimentation"""
unsafe_launch: Optional[bool] = Field(
False, description=("Skip Exllamav2 version check")
)
disable_request_streaming: Optional[bool] = Field(
False, description=("Disables API request streaming")
)
cuda_malloc_backend: Optional[bool] = Field(
False, description=("Runs with the pytorch CUDA malloc backend")
)
uvloop: Optional[bool] = Field(
False, description=("Run asyncio using Uvloop or Winloop")
)
realtime_process_priority: Optional[bool] = Field(
False,
description=(
"Set process to use a higher priority For realtime process priority, run "
"as administrator or sudo Otherwise, the priority will be set to high"
),
)
class TabbyConfigModel(BaseModel):
"""Base model for a TabbyConfig."""
config: ConfigOverrideConfig = Field(
default_factory=ConfigOverrideConfig.model_construct
)
network: NetworkConfig = Field(default_factory=NetworkConfig.model_construct)
logging: LoggingConfig = Field(default_factory=LoggingConfig.model_construct)
model: ModelConfig = Field(default_factory=ModelConfig.model_construct)
draft_model: DraftModelConfig = Field(
default_factory=DraftModelConfig.model_construct
)
lora: LoraConfig = Field(default_factory=LoraConfig.model_construct)
embeddings: EmbeddingsConfig = Field(
default_factory=EmbeddingsConfig.model_construct
)
sampling: SamplingConfig = Field(default_factory=SamplingConfig.model_construct)
developer: DeveloperConfig = Field(default_factory=DeveloperConfig.model_construct)
actions: UtilityActions = Field(default_factory=UtilityActions.model_construct)
model_config = ConfigDict(validate_assignment=True, protected_namespaces=())
# TODO: Possibly switch to ruamel.yaml for a more native implementation
def generate_config_file(
model: BaseConfigModel = None,
filename: str = "config_sample.yml",
indentation: int = 2,
) -> None:
"""Creates a config.yml file from Pydantic models."""
# Add a preamble
yaml = dedent("""
# Sample YAML file for configuration.
# Comment and uncomment values as needed.
# Every value has a default within the application.
# This file serves to be a drop in for config.yml
# Unless specified in the comments, DO NOT put these options in quotes!
# You can use https://www.yamllint.com/ if you want to check your YAML formatting.\n
""")
schema = model if model else TabbyConfigModel()
# TODO: Make the disordered iteration look cleaner
iter_once = False
for field, field_data in schema.model_fields.items():
subfield_model = field_data.default_factory()
if not subfield_model._metadata.include_in_config:
continue
# Since the list is out of order with the length
# Add newlines from the beginning once one iteration finishes
# This is a sanity check for formatting
if iter_once:
yaml += "\n"
else:
iter_once = True
for line in getdoc(subfield_model).splitlines():
yaml += f"# {line}\n"
yaml += f"{field}:\n"
sub_iter_once = False
for subfield, subfield_data in subfield_model.model_fields.items():
# Same logic as iter_once
if sub_iter_once:
yaml += "\n"
else:
sub_iter_once = True
value = subfield_data.default
value = value if value is not None else ""
value = value if value is not PydanticUndefined else ""
yaml += f"{' ' * indentation}# {subfield_data.description}\n"
yaml += f"{' ' * indentation}{subfield}: {value}\n"
with open(filename, "w") as f:
f.write(yaml)