Models can be loaded and unloaded via the API. Also add authentication to use the API and for administrator tasks. Both types of authorization use different keys. Also fix the unload function to properly free all used vram. Signed-off-by: kingbri <bdashore3@proton.me>
320 lines
No EOL
13 KiB
Python
320 lines
No EOL
13 KiB
Python
import gc, time, pathlib
|
|
import torch
|
|
from exllamav2 import(
|
|
ExLlamaV2,
|
|
ExLlamaV2Config,
|
|
ExLlamaV2Cache,
|
|
ExLlamaV2Cache_8bit,
|
|
ExLlamaV2Tokenizer,
|
|
)
|
|
from exllamav2.generator import(
|
|
ExLlamaV2StreamingGenerator,
|
|
ExLlamaV2Sampler
|
|
)
|
|
from typing import Optional
|
|
|
|
# Bytes to reserve on first device when loading with auto split
|
|
auto_split_reserve_bytes = 96 * 1024**2
|
|
|
|
class ModelContainer:
|
|
|
|
config: Optional[ExLlamaV2Config] = None
|
|
draft_config: Optional[ExLlamaV2Config] = None
|
|
model: Optional[ExLlamaV2] = None
|
|
draft_model: Optional[ExLlamaV2] = None
|
|
cache: Optional[ExLlamaV2Cache] = None
|
|
draft_cache: Optional[ExLlamaV2Cache] = None
|
|
tokenizer: Optional[ExLlamaV2Tokenizer] = None
|
|
generator: Optional[ExLlamaV2StreamingGenerator] = None
|
|
|
|
cache_fp8: bool = False
|
|
draft_enabled: bool = False
|
|
gpu_split_auto: bool = True
|
|
gpu_split: list or None = None
|
|
|
|
def __init__(self, model_directory: pathlib.Path, quiet = False, **kwargs):
|
|
"""
|
|
Create model container
|
|
|
|
Args:
|
|
model_dir (int): Model directory containing config.json, tokenizer.model etc.
|
|
quiet (bool): Suppress console output
|
|
load_progress_callback (function, optional): A function to call for each module loaded. Prototype:
|
|
def progress(loaded_modules: int, total_modules: int, loading_draft: bool)
|
|
**kwargs:
|
|
`cache_mode` (str): Sets cache mode, "FP16" or "FP8" (defaulf: "FP16")
|
|
'max_seq_len' (int): Override model's default max sequence length
|
|
'rope_scale' (float): Set RoPE scaling factor for model (default: 1.0)
|
|
'rope_alpha' (float): Set RoPE alpha (NTK) factor for model (default: 1.0)
|
|
'chunk_size' (int): Sets the maximum chunk size for the model (default: 2048)
|
|
Inferencing in chunks reduces overall VRAM overhead by processing very long sequences in smaller
|
|
batches. This limits the size of temporary buffers needed for the hidden state and attention
|
|
weights.
|
|
'draft_model_dir' (str): Draft model directory
|
|
'draft_rope_alpha' (float): RoPE alpha (NTK) factor for draft model.
|
|
By default, the draft model's alpha value is calculated automatically to scale to the size of the
|
|
full model.
|
|
'gpu_split_auto' (bool): Automatically split model across available devices (default: True)
|
|
'gpu_split' (list): Allocation for weights and (some) tensors, per device
|
|
'no_flash_attn' (bool): Turns off flash attention (increases vram usage)
|
|
"""
|
|
|
|
self.quiet = quiet
|
|
|
|
self.cache_fp8 = "cache_mode" in kwargs and kwargs["cache_mode"] == "FP8"
|
|
self.gpu_split = kwargs.get("gpu_split", None)
|
|
self.gpu_split_auto = self.gpu_split == "auto"
|
|
|
|
self.config = ExLlamaV2Config()
|
|
self.config.model_dir = str(model_directory.resolve())
|
|
self.config.prepare()
|
|
|
|
if "max_seq_len" in kwargs: self.config.max_seq_len = kwargs["max_seq_len"]
|
|
if "rope_scale" in kwargs: self.config.scale_pos_emb = kwargs["rope_scale"]
|
|
if "rope_alpha" in kwargs: self.config.scale_alpha_value = kwargs["rope_alpha"]
|
|
if "no_flash_attn" in kwargs: self.config.no_flash_attn = kwargs["no_flash_attn"]
|
|
|
|
if "low_mem" in kwargs and kwargs["low_mem"]:
|
|
self.config.set_low_mem()
|
|
|
|
chunk_size = min(kwargs.get("chunk_size", 2048), self.config.max_seq_len)
|
|
self.config.max_input_len = chunk_size
|
|
self.config.max_attn_size = chunk_size ** 2
|
|
|
|
self.draft_enabled = "draft_model_dir" in kwargs
|
|
if self.draft_enabled:
|
|
|
|
self.draft_config = ExLlamaV2Config()
|
|
self.draft_config.model_dir = kwargs["draft_model_dir"]
|
|
self.draft_config.prepare()
|
|
|
|
self.draft_config.max_seq_len = self.config.max_seq_len
|
|
|
|
if "draft_rope_alpha" in kwargs:
|
|
self.draft_config.scale_alpha_value = kwargs["draft_rope_alpha"]
|
|
else:
|
|
ratio = self.config.max_seq_len / self.draft_config.max_seq_len
|
|
alpha = -0.13436 + 0.80541 * ratio + 0.28833 * ratio ** 2
|
|
self.draft_config.scale_alpha_value = alpha
|
|
|
|
if "chunk_size" in kwargs:
|
|
self.draft_config.max_input_len = kwargs["chunk_size"]
|
|
self.draft_config.max_attn_size = kwargs["chunk_size"] ** 2
|
|
|
|
|
|
def get_model_path(self):
|
|
model_path = pathlib.Path(self.config.model_dir)
|
|
return model_path
|
|
|
|
|
|
def load(self, progress_callback = None):
|
|
"""
|
|
Load model
|
|
|
|
Args:
|
|
progress_callback (function, optional): A function to call for each module loaded. Prototype:
|
|
def progress(loaded_modules: int, total_modules: int)
|
|
"""
|
|
for _ in self.load_gen(progress_callback): pass
|
|
|
|
|
|
def load_gen(self, progress_callback = None):
|
|
"""
|
|
Load model, generator function
|
|
|
|
Args:
|
|
progress_callback (function, optional): A function to call for each module loaded. Prototype:
|
|
def progress(loaded_modules: int, total_modules: int)
|
|
"""
|
|
|
|
# Load tokenizer
|
|
|
|
self.tokenizer = ExLlamaV2Tokenizer(self.config)
|
|
|
|
# Load draft model
|
|
|
|
if self.draft_enabled:
|
|
|
|
self.draft_model = ExLlamaV2(self.draft_config)
|
|
if not self.quiet:
|
|
print("Loading draft model: " + self.draft_config.model_dir)
|
|
|
|
self.draft_cache = ExLlamaV2Cache(self.draft_model, lazy = True)
|
|
reserve = [auto_split_reserve_bytes] + [0] * 16
|
|
yield from self.draft_model.load_autosplit_gen(self.draft_cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
|
|
|
|
# Test VRAM allocation with a full-length forward pass
|
|
|
|
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
|
|
self.draft_model.forward(input_ids, cache = self.cache, preprocess_only = True)
|
|
|
|
# Load model
|
|
|
|
self.model = ExLlamaV2(self.config)
|
|
if not self.quiet:
|
|
print("Loading model: " + self.config.model_dir)
|
|
|
|
if not self.gpu_split_auto:
|
|
for value in self.model.load_gen(self.gpu_split, callback_gen = progress_callback):
|
|
if isinstance(value, str):
|
|
yield value
|
|
|
|
if self.cache_fp8:
|
|
self.cache = ExLlamaV2Cache_8bit(self.model, lazy = self.gpu_split_auto)
|
|
else:
|
|
self.cache = ExLlamaV2Cache(self.model, lazy = self.gpu_split_auto)
|
|
|
|
if self.gpu_split_auto:
|
|
reserve = [auto_split_reserve_bytes] + [0] * 16
|
|
yield from self.model.load_autosplit_gen(self.cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
|
|
|
|
# Test VRAM allocation with a full-length forward pass
|
|
|
|
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
|
|
self.model.forward(input_ids, cache = self.cache, preprocess_only = True)
|
|
|
|
# Create generator
|
|
|
|
self.generator = ExLlamaV2StreamingGenerator(self.model, self.cache, self.tokenizer, self.draft_model, self.draft_cache)
|
|
|
|
|
|
def unload(self):
|
|
"""
|
|
Free all VRAM resources used by this model
|
|
"""
|
|
|
|
if self.model: self.model.unload()
|
|
self.model = None
|
|
if self.draft_model: self.draft_model.unload()
|
|
self.draft_model = None
|
|
self.config = None
|
|
self.cache = None
|
|
self.tokenizer = None
|
|
self.generator = None
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def generate(self, prompt: str, **kwargs):
|
|
gen = self.generate_gen(prompt, **kwargs)
|
|
reponse = "".join(gen)
|
|
return reponse
|
|
|
|
def generate_gen(self, prompt: str, **kwargs):
|
|
"""
|
|
Create generator function for prompt completion
|
|
|
|
Args:
|
|
prompt (str): Input prompt
|
|
**kwargs:
|
|
'token_healing' (bool): Use token healing (default: False)
|
|
'temperature' (float): Sampling temperature (default: 1.0)
|
|
'top_k' (int): Sampling top-K (default: 0)
|
|
'top_p' (float): Sampling top-P (default: 1.0)
|
|
'min_p' (float): Sampling min-P (default: 0.0)
|
|
'tfs' (float): Tail-free sampling (default: 0.0)
|
|
'typical' (float): Sampling typical (default: 0.0)
|
|
'mirostat' (bool): Use Mirostat (default: False)
|
|
'mirostat_tau' (float) Mirostat tau parameter (default: 1.5)
|
|
'mirostat_eta' (float) Mirostat eta parameter (default: 0.1)
|
|
'repetition_penalty' (float): Token repetition/presence penalty (default: 1.15)
|
|
'repetition_range' (int): Repetition penalty range (default: whole context)
|
|
'repetition_decay' (int): Repetition penalty range (default: same as range)
|
|
'stop' (list): List of stop strings/tokens to end response (default: [EOS])
|
|
'max_tokens' (int): Max no. tokens in response (default: 150)
|
|
'stream_interval' (float): Interval in seconds between each output chunk (default: immediate)
|
|
'generate_window' (int): Space to reserve at the end of the model's context when generating.
|
|
Rolls context window by the same amount if context length is exceeded to allow generating past
|
|
the models max_seq_len.
|
|
|
|
"""
|
|
|
|
token_healing = kwargs.get("token_healing", False)
|
|
max_tokens = kwargs.get("max_tokens", 150)
|
|
stream_interval = kwargs.get("stream_interval", 0)
|
|
generate_window = min(kwargs.get("generate_window", 512), max_tokens)
|
|
|
|
# Sampler settings
|
|
|
|
gen_settings = ExLlamaV2Sampler.Settings()
|
|
gen_settings.temperature = kwargs.get("temperature", 1.0)
|
|
gen_settings.top_k = kwargs.get("top_k", 1)
|
|
gen_settings.top_p = kwargs.get("top_p", 1.0)
|
|
gen_settings.min_p = kwargs.get("min_p", 0.0)
|
|
gen_settings.tfs = kwargs.get("tfs", 0.0)
|
|
gen_settings.typical = kwargs.get("typical", 0.0)
|
|
gen_settings.mirostat = kwargs.get("mirostat", False)
|
|
|
|
# Default tau and eta fallbacks don't matter if mirostat is off
|
|
gen_settings.mirostat_tau = kwargs.get("mirostat_tau", 1.5)
|
|
gen_settings.mirostat_eta = kwargs.get("mirostat_eta", 0.1)
|
|
gen_settings.token_repetition_penalty = kwargs.get("repetition_penalty", 1.0)
|
|
gen_settings.token_repetition_range = kwargs.get("repetition_range", self.config.max_seq_len)
|
|
gen_settings.token_repetition_decay = kwargs.get("repetition_decay", gen_settings.token_repetition_range)
|
|
|
|
# Override sampler settings for temp = 0
|
|
|
|
if gen_settings.temperature == 0:
|
|
gen_settings.temperature = 1.0
|
|
gen_settings.top_k = 1
|
|
gen_settings.top_p = 0
|
|
gen_settings.typical = 0
|
|
|
|
# Stop conditions
|
|
|
|
self.generator.set_stop_conditions(kwargs.get("stop", [self.tokenizer.eos_token_id]))
|
|
|
|
# Tokenized context
|
|
|
|
ids = self.tokenizer.encode(prompt, encode_special_tokens = True)
|
|
|
|
# Begin
|
|
|
|
generated_tokens = 0
|
|
full_response = ""
|
|
last_chunk_time = time.time()
|
|
|
|
save_tokens = torch.empty((1, 0), dtype = torch.bool)
|
|
chunk_buffer = ""
|
|
chunk_tokens = 0
|
|
|
|
while True:
|
|
|
|
# Ingest prompt
|
|
|
|
if chunk_tokens == 0:
|
|
|
|
ids = torch.cat((ids, save_tokens), dim = - 1)
|
|
save_tokens = torch.empty((1, 0), dtype = torch.bool)
|
|
overflow = ids.shape[-1] + generate_window - self.config.max_seq_len
|
|
active_ids = ids[:, max(0, overflow):]
|
|
chunk_tokens = self.config.max_seq_len - active_ids.shape[-1]
|
|
|
|
self.generator.begin_stream(active_ids, gen_settings, token_healing = token_healing)
|
|
|
|
# Generate
|
|
|
|
chunk, eos, tokens = self.generator.stream()
|
|
|
|
if token_healing:
|
|
ids[:, -1] = self.generator.sequence_ids[:, -2] # Extract healed token
|
|
token_healing = False
|
|
|
|
save_tokens = torch.cat((save_tokens, tokens), dim=-1)
|
|
chunk_buffer += chunk
|
|
|
|
generated_tokens += 1
|
|
chunk_tokens -= 1
|
|
|
|
# Yield output
|
|
|
|
now = time.time()
|
|
elapsed = now - last_chunk_time
|
|
|
|
if chunk_buffer != "" and (elapsed > stream_interval or eos or generated_tokens == max_tokens):
|
|
yield chunk_buffer
|
|
full_response += chunk_buffer
|
|
chunk_buffer = ""
|
|
last_chunk_time = now
|
|
|
|
if eos or generated_tokens == max_tokens: break |