The HFModel class serves to coalesce all config files that contain random keys which are required for model usage. Adding this base class allows us to expand as HuggingFace randomly changes their JSON schemas over time, reducing the brunt that backend devs need to feel when their next model isn't supported. Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
1459 lines
52 KiB
Python
1459 lines
52 KiB
Python
"""The model container class for ExLlamaV2 models."""
|
|
|
|
import asyncio
|
|
import gc
|
|
import math
|
|
import pathlib
|
|
import torch
|
|
from exllamav2 import (
|
|
ExLlamaV2,
|
|
ExLlamaV2Config,
|
|
ExLlamaV2CacheBase,
|
|
ExLlamaV2Cache,
|
|
ExLlamaV2Cache_Q4,
|
|
ExLlamaV2Cache_Q6,
|
|
ExLlamaV2Cache_Q8,
|
|
ExLlamaV2Cache_TP,
|
|
ExLlamaV2Tokenizer,
|
|
ExLlamaV2Lora,
|
|
ExLlamaV2VisionTower,
|
|
)
|
|
from exllamav2.generator import (
|
|
ExLlamaV2Sampler,
|
|
ExLlamaV2DynamicGeneratorAsync,
|
|
ExLlamaV2DynamicJobAsync,
|
|
)
|
|
from itertools import zip_longest
|
|
from loguru import logger
|
|
from typing import Dict, List, Optional
|
|
|
|
from backends.base_model_container import BaseModelContainer
|
|
from backends.exllamav2.grammar import (
|
|
ExLlamaV2Grammar,
|
|
clear_grammar_func_cache,
|
|
)
|
|
from backends.exllamav2.utils import exllama_disabled_flash_attn
|
|
from backends.exllamav2.vision import clear_image_embedding_cache
|
|
from common.concurrency import iterate_in_threadpool
|
|
from common.gen_logging import (
|
|
log_generation_params,
|
|
log_metrics,
|
|
log_prompt,
|
|
log_response,
|
|
)
|
|
from common.hardware import hardware_supports_flash_attn
|
|
from common.health import HealthManager
|
|
from common.multimodal import MultimodalEmbeddingWrapper
|
|
from common.sampling import BaseSamplerRequest
|
|
from common.templating import PromptTemplate, find_prompt_template
|
|
from common.transformers_utils import HFModel
|
|
from common.utils import calculate_rope_alpha, coalesce, unwrap
|
|
from endpoints.core.types.model import ModelCard, ModelCardParameters
|
|
|
|
|
|
class ExllamaV2Container(BaseModelContainer):
|
|
"""The model container class for ExLlamaV2 models."""
|
|
|
|
# Model directories
|
|
model_dir: pathlib.Path = pathlib.Path("models")
|
|
draft_model_dir: pathlib.Path = pathlib.Path("models")
|
|
prompt_template: Optional[PromptTemplate] = None
|
|
|
|
# HF model instance
|
|
hf_model: HFModel
|
|
|
|
# Exl2 vars
|
|
config: Optional[ExLlamaV2Config] = None
|
|
model: Optional[ExLlamaV2] = None
|
|
cache: Optional[ExLlamaV2Cache] = None
|
|
tokenizer: Optional[ExLlamaV2Tokenizer] = None
|
|
generator: Optional[ExLlamaV2DynamicGeneratorAsync] = None
|
|
prompt_template: Optional[PromptTemplate] = None
|
|
paged: bool = True
|
|
|
|
# Draft model vars
|
|
use_draft_model: bool = False
|
|
draft_config: Optional[ExLlamaV2Config] = None
|
|
draft_model: Optional[ExLlamaV2] = None
|
|
draft_cache: Optional[ExLlamaV2Cache] = None
|
|
|
|
# Internal config vars
|
|
cache_size: int = None
|
|
cache_mode: str = "FP16"
|
|
draft_cache_mode: str = "FP16"
|
|
max_batch_size: Optional[int] = None
|
|
|
|
# GPU split vars
|
|
gpu_split: List[float] = []
|
|
draft_gpu_split: List[float] = []
|
|
gpu_split_auto: bool = True
|
|
autosplit_reserve: List[float] = [96 * 1024**2]
|
|
use_tp: bool = False
|
|
|
|
# Vision vars
|
|
use_vision: bool = False
|
|
vision_model: Optional[ExLlamaV2VisionTower] = None
|
|
|
|
# Load synchronization
|
|
active_job_ids: Dict[str, Optional[ExLlamaV2DynamicJobAsync]] = {}
|
|
loaded: bool = False
|
|
load_lock: asyncio.Lock = asyncio.Lock()
|
|
load_condition: asyncio.Condition = asyncio.Condition()
|
|
|
|
@classmethod
|
|
async def create(cls, model_directory: pathlib.Path, hf_model: HFModel, **kwargs):
|
|
"""
|
|
Primary asynchronous initializer for model container.
|
|
|
|
Kwargs are located in config_sample.yml
|
|
"""
|
|
|
|
# Create a new instance as a "fake self"
|
|
self = cls()
|
|
|
|
# Initialize config
|
|
self.config = ExLlamaV2Config()
|
|
self.model_dir = model_directory
|
|
self.config.model_dir = str(model_directory.resolve())
|
|
self.hf_model = hf_model
|
|
|
|
# Make the max seq len 4096 before preparing the config
|
|
# This is a better default than 2048
|
|
self.config.max_seq_len = 4096
|
|
|
|
self.config.prepare()
|
|
|
|
# Check if the model arch is compatible with various exl2 features
|
|
self.config.arch_compat_overrides()
|
|
|
|
# Set vision state and error if vision isn't supported on the current model
|
|
self.use_vision = unwrap(kwargs.get("vision"), False)
|
|
if self.use_vision and not self.config.vision_model_type:
|
|
raise ValueError(
|
|
"The provided model does not have vision capabilities that are "
|
|
"supported by ExllamaV2. "
|
|
"Please reload with vision disabled."
|
|
)
|
|
|
|
# Prepare the draft model config if necessary
|
|
draft_args = unwrap(kwargs.get("draft_model"), {})
|
|
draft_model_name = draft_args.get("draft_model_name")
|
|
self.use_draft_model = draft_args and draft_model_name
|
|
|
|
# Always disable draft if params are incorrectly configured
|
|
if draft_args and draft_model_name is None:
|
|
logger.warning(
|
|
"Draft model is disabled because a model name "
|
|
"wasn't provided. Please check your config.yml!"
|
|
)
|
|
self.use_draft_model = False
|
|
|
|
if self.use_draft_model:
|
|
self.draft_config = ExLlamaV2Config()
|
|
draft_model_path = pathlib.Path(
|
|
unwrap(draft_args.get("draft_model_dir"), "models")
|
|
)
|
|
draft_model_path = draft_model_path / draft_model_name
|
|
|
|
self.draft_gpu_split = unwrap(draft_args.get("draft_gpu_split"), [])
|
|
self.draft_model_dir = draft_model_path
|
|
self.draft_config.model_dir = str(draft_model_path.resolve())
|
|
self.draft_config.prepare()
|
|
|
|
# MARK: User configuration
|
|
|
|
# Get cache mode
|
|
self.cache_mode = unwrap(kwargs.get("cache_mode"), "FP16")
|
|
|
|
# Catch exllamav3 cache_mode
|
|
if self.cache_mode != "FP16" and not self.cache_mode.startswith("Q"):
|
|
logger.warning(
|
|
f"Provided cache mode '{self.cache_mode}' is not a "
|
|
"valid choice for exllamav2, please check your settings. "
|
|
"Defaulting to FP16."
|
|
)
|
|
self.cache_mode = "FP16"
|
|
|
|
# Turn off GPU split if the user is using 1 GPU
|
|
gpu_count = torch.cuda.device_count()
|
|
gpu_split_auto = unwrap(kwargs.get("gpu_split_auto"), True)
|
|
use_tp = unwrap(kwargs.get("tensor_parallel"), False)
|
|
gpu_split = unwrap(kwargs.get("gpu_split"), [])
|
|
gpu_device_list = list(range(0, gpu_count))
|
|
|
|
# Set GPU split options
|
|
if gpu_count == 1:
|
|
self.gpu_split_auto = False
|
|
logger.info("Disabling GPU split because one GPU is in use.")
|
|
else:
|
|
# Set tensor parallel
|
|
if use_tp:
|
|
self.use_tp = True
|
|
|
|
# TP has its own autosplit loader
|
|
self.gpu_split_auto = False
|
|
|
|
# Enable manual GPU split if provided
|
|
if gpu_split:
|
|
self.gpu_split_auto = False
|
|
self.gpu_split = gpu_split
|
|
|
|
gpu_device_list = [
|
|
device_idx
|
|
for device_idx, memory in enumerate(self.gpu_split)
|
|
if memory > 0
|
|
]
|
|
elif gpu_split_auto and not self.use_tp:
|
|
# Otherwise fallback to autosplit settings
|
|
self.gpu_split_auto = gpu_split_auto
|
|
|
|
autosplit_reserve_megabytes = unwrap(
|
|
kwargs.get("autosplit_reserve"), [96]
|
|
)
|
|
|
|
# Reserve VRAM for each GPU
|
|
self.autosplit_reserve = [
|
|
int(math.ceil(value * 1024**2))
|
|
for value in autosplit_reserve_megabytes
|
|
]
|
|
|
|
# Change the GPU device list only if gpu_split's list is too small
|
|
# This allows for an uneven list specification
|
|
if self.draft_gpu_split and len(self.draft_gpu_split) > len(self.gpu_split):
|
|
gpu_device_list = [
|
|
device_idx
|
|
for device_idx, memory in enumerate(self.draft_gpu_split)
|
|
if memory > 0
|
|
]
|
|
|
|
# Hardcode max output length to 16
|
|
self.config.max_output_len = 16
|
|
|
|
# Grab the base model's sequence length before overrides for
|
|
# rope calculations
|
|
base_seq_len = self.config.max_seq_len
|
|
|
|
# Set the target seq len if present
|
|
# Fallback to base_seq_len if not provided
|
|
target_seq_len = unwrap(kwargs.get("max_seq_len"), base_seq_len)
|
|
|
|
# Set the rope scale
|
|
self.config.scale_pos_emb = unwrap(
|
|
kwargs.get("rope_scale"), self.config.scale_pos_emb
|
|
)
|
|
|
|
# Sets rope alpha value.
|
|
# Automatically calculate if unset or defined as an "auto" literal.
|
|
rope_alpha = unwrap(kwargs.get("rope_alpha"), "auto")
|
|
if rope_alpha == "auto":
|
|
self.config.scale_alpha_value = calculate_rope_alpha(
|
|
base_seq_len, target_seq_len
|
|
)
|
|
else:
|
|
self.config.scale_alpha_value = rope_alpha
|
|
|
|
# Set the max seq len if specified
|
|
if target_seq_len:
|
|
self.config.max_seq_len = target_seq_len
|
|
|
|
# Set max batch size to the config override
|
|
self.max_batch_size = unwrap(kwargs.get("max_batch_size"))
|
|
|
|
# Check whether the user's configuration supports flash/paged attention
|
|
# Also check if exl2 has disabled flash attention
|
|
if exllama_disabled_flash_attn(
|
|
self.config.no_flash_attn
|
|
) or not hardware_supports_flash_attn(gpu_device_list):
|
|
gpu_unsupported_message = (
|
|
"An unsupported GPU is found in this configuration. "
|
|
"Switching to compatibility mode. \n"
|
|
"This disables parallel batching "
|
|
"and features that rely on it (ex. CFG). \n"
|
|
"To disable compatability mode, all GPUs must be ampere "
|
|
"(30 series) or newer. AMD GPUs are not supported."
|
|
)
|
|
|
|
logger.warning(gpu_unsupported_message)
|
|
|
|
self.config.no_flash_attn = True
|
|
if self.draft_config:
|
|
self.draft_config.no_flash_attn = True
|
|
self.paged = False
|
|
self.max_batch_size = 1
|
|
torch.backends.cuda.enable_flash_sdp(False)
|
|
|
|
# Set k/v cache size
|
|
# cache_size is only relevant when paged mode is enabled
|
|
if self.paged:
|
|
cache_size = unwrap(kwargs.get("cache_size"), self.config.max_seq_len)
|
|
|
|
if cache_size < self.config.max_seq_len:
|
|
logger.warning(
|
|
f"The given cache_size ({cache_size}) is smaller than the "
|
|
"desired context length.\n"
|
|
"Overriding cache_size to max_seq_len. "
|
|
)
|
|
|
|
cache_size = self.config.max_seq_len
|
|
|
|
# Enforce a multiple of 256 for cache size
|
|
# Overestimate to ensure that the cache isn't below max_seq_len
|
|
cache_remainder = cache_size % 256
|
|
if cache_remainder != 0:
|
|
rounded_cache_size = int(
|
|
256 * ((cache_size - cache_remainder) / 256 + 1)
|
|
)
|
|
|
|
logger.warning(
|
|
f"The given cache size ({cache_size}) is "
|
|
"not a multiple of 256.\n"
|
|
"Overriding cache_size with an overestimated value of "
|
|
f"{rounded_cache_size} tokens."
|
|
)
|
|
|
|
cache_size = rounded_cache_size
|
|
|
|
# Warn user if cache size may be inadequate for CFG
|
|
if cache_size < 2 * self.config.max_seq_len:
|
|
logger.warning(
|
|
f"The given cache_size ({cache_size}) is less than 2 * max_seq_len "
|
|
"and may be too small for requests using CFG. \n"
|
|
"Ignore this warning if you do not plan on using CFG."
|
|
)
|
|
|
|
self.cache_size = cache_size
|
|
else:
|
|
self.cache_size = self.config.max_seq_len
|
|
|
|
# Try to set prompt template
|
|
self.prompt_template = await find_prompt_template(
|
|
kwargs.get("prompt_template"), model_directory
|
|
)
|
|
|
|
# Catch all for template lookup errors
|
|
if self.prompt_template:
|
|
logger.info(
|
|
f'Using template "{self.prompt_template.name}" for chat completions.'
|
|
)
|
|
else:
|
|
logger.warning(
|
|
"Chat completions are disabled because a prompt "
|
|
"template wasn't provided or auto-detected."
|
|
)
|
|
|
|
# Make sure chunk size is >= 256, keep near or below max seq len
|
|
user_chunk_size = unwrap(kwargs.get("chunk_size"), 2048)
|
|
chunk_size = sorted((256, user_chunk_size, self.config.max_seq_len))[1]
|
|
chunk_remainder = chunk_size % 256
|
|
if chunk_remainder != 0:
|
|
rounded_chunk_size = int(256 * ((chunk_size - chunk_remainder) / 256 + 1))
|
|
|
|
logger.warning(
|
|
f"The given chunk size ({chunk_size}) is "
|
|
"not a multiple of 256.\n"
|
|
"Overriding chunk_size with an overestimated value of "
|
|
f"{rounded_chunk_size} tokens."
|
|
)
|
|
chunk_size = rounded_chunk_size
|
|
self.config.max_input_len = chunk_size
|
|
self.config.max_attention_size = chunk_size**2
|
|
|
|
# Set user-configured draft model values
|
|
if self.use_draft_model:
|
|
self.draft_config.max_seq_len = self.config.max_seq_len
|
|
|
|
self.draft_config.scale_pos_emb = unwrap(
|
|
draft_args.get("draft_rope_scale"), 1.0
|
|
)
|
|
|
|
# Set draft rope alpha. Follows same behavior as model rope alpha.
|
|
# Use the base sequence length of the model
|
|
draft_rope_alpha = unwrap(draft_args.get("draft_rope_alpha"), "auto")
|
|
if draft_rope_alpha == "auto":
|
|
self.draft_config.scale_alpha_value = calculate_rope_alpha(
|
|
base_seq_len, self.draft_config.max_seq_len
|
|
)
|
|
else:
|
|
self.draft_config.scale_alpha_value = draft_rope_alpha
|
|
|
|
# Set draft cache mode
|
|
self.draft_cache_mode = unwrap(draft_args.get("draft_cache_mode"), "FP16")
|
|
|
|
# Catch exllamav3 draft_cache_mode
|
|
if self.draft_cache_mode != "FP16" and not self.draft_cache_mode.startswith(
|
|
"Q"
|
|
):
|
|
logger.warning(
|
|
f"Provided draft cache mode '{self.draft_cache_mode}' is not a "
|
|
"valid choice for exllamav2, please check your settings. "
|
|
"Defaulting to FP16."
|
|
)
|
|
self.draft_cache_mode = "FP16"
|
|
|
|
# Edit the draft config size
|
|
if chunk_size:
|
|
self.draft_config.max_input_len = chunk_size
|
|
self.draft_config.max_attention_size = chunk_size**2
|
|
|
|
# Return the created instance
|
|
return self
|
|
|
|
def model_info(self):
|
|
draft_model_card: ModelCard = None
|
|
if self.draft_config:
|
|
draft_model_params = ModelCardParameters(
|
|
max_seq_len=self.draft_config.max_seq_len,
|
|
rope_scale=self.draft_config.scale_pos_emb,
|
|
rope_alpha=self.draft_config.scale_alpha_value,
|
|
cache_mode=self.draft_cache_mode,
|
|
)
|
|
|
|
draft_model_card = ModelCard(
|
|
id=self.draft_model_dir.name,
|
|
parameters=draft_model_params,
|
|
)
|
|
|
|
model_params = ModelCardParameters(
|
|
max_seq_len=self.config.max_seq_len,
|
|
cache_size=self.cache_size,
|
|
rope_scale=self.config.scale_pos_emb,
|
|
rope_alpha=self.config.scale_alpha_value,
|
|
max_batch_size=self.max_batch_size,
|
|
cache_mode=self.cache_mode,
|
|
chunk_size=self.config.max_input_len,
|
|
use_vision=self.use_vision,
|
|
draft=draft_model_card,
|
|
)
|
|
|
|
if self.prompt_template:
|
|
model_params.prompt_template = self.prompt_template.name
|
|
model_params.prompt_template_content = self.prompt_template.raw_template
|
|
|
|
model_card = ModelCard(
|
|
id=self.model_dir.name,
|
|
parameters=model_params,
|
|
)
|
|
|
|
return model_card
|
|
|
|
async def wait_for_jobs(self, skip_wait: bool = False):
|
|
"""Polling mechanism to wait for pending generation jobs."""
|
|
|
|
if not self.generator:
|
|
return
|
|
|
|
# Immediately abort all jobs if asked
|
|
if skip_wait:
|
|
logger.warning(
|
|
"Immediately terminating all jobs. "
|
|
"Clients will have their requests cancelled.\n"
|
|
)
|
|
|
|
for job in self.active_job_ids.values():
|
|
if job:
|
|
await job.cancel()
|
|
|
|
while len(self.active_job_ids) > 0:
|
|
await asyncio.sleep(0.01)
|
|
|
|
async def load(self, progress_callback=None):
|
|
"""
|
|
Load model
|
|
|
|
Args:
|
|
progress_callback (function, optional): A function to call for each
|
|
module loaded.
|
|
|
|
Prototype:
|
|
def progress(loaded_modules: int, total_modules: int)
|
|
"""
|
|
|
|
async for _ in self.load_gen(progress_callback):
|
|
pass
|
|
|
|
async def load_gen(self, progress_callback=None, **kwargs):
|
|
"""Loads a model and streams progress via a generator."""
|
|
|
|
# Indicate that model load has started
|
|
# Do this operation under the load lock's context
|
|
try:
|
|
await self.load_lock.acquire()
|
|
|
|
# Wait for existing generation jobs to finish
|
|
await self.wait_for_jobs(kwargs.get("skip_wait"))
|
|
|
|
# Streaming gen for model load progress
|
|
model_load_generator = self.load_model_sync(progress_callback)
|
|
async for value in iterate_in_threadpool(model_load_generator):
|
|
yield value
|
|
|
|
# Create async generator
|
|
await self.create_generator()
|
|
|
|
# Clean up any extra vram usage from torch and cuda
|
|
# (Helps reduce VRAM bottlenecking on Windows)
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
# Cleanup and update model load state
|
|
self.loaded = True
|
|
logger.info("Model successfully loaded.")
|
|
finally:
|
|
self.load_lock.release()
|
|
|
|
async with self.load_condition:
|
|
self.load_condition.notify_all()
|
|
|
|
@torch.inference_mode()
|
|
def load_model_sync(self, progress_callback=None):
|
|
"""
|
|
Synchronous generator for loading.
|
|
|
|
Args:
|
|
progress_callback (function, optional): A function to call for each
|
|
module loaded.
|
|
|
|
Prototype:
|
|
def progress(loaded_modules: int, total_modules: int)
|
|
|
|
Runs under a shared inference mode context.
|
|
"""
|
|
|
|
# Reset tokenizer namespace vars and create a tokenizer
|
|
ExLlamaV2Tokenizer.unspecial_piece_to_id = {}
|
|
ExLlamaV2Tokenizer.unspecial_id_to_piece = {}
|
|
ExLlamaV2Tokenizer.extended_id_to_piece = {}
|
|
ExLlamaV2Tokenizer.extended_piece_to_id = {}
|
|
|
|
self.tokenizer = ExLlamaV2Tokenizer(self.config)
|
|
|
|
# Calculate autosplit reserve for all GPUs
|
|
gpu_count = torch.cuda.device_count()
|
|
autosplit_reserve = self.autosplit_reserve + [0] * (
|
|
gpu_count - len(self.autosplit_reserve)
|
|
)
|
|
|
|
# Load draft model if a config is present
|
|
if self.draft_config:
|
|
self.draft_model = ExLlamaV2(self.draft_config)
|
|
logger.info("Loading draft model: " + self.draft_config.model_dir)
|
|
|
|
# Draft uses the autosplit loader, so create a cache that reflects this
|
|
draft_cache_class = self.get_cache_class(self.draft_cache_mode)
|
|
|
|
if self.draft_gpu_split:
|
|
logger.info("Loading with a manual GPU split (or a one GPU setup)")
|
|
|
|
for value in self.draft_model.load_gen(
|
|
self.draft_gpu_split,
|
|
callback_gen=progress_callback,
|
|
):
|
|
if value:
|
|
yield value
|
|
|
|
self.draft_cache = self.create_cache(
|
|
cache_class=draft_cache_class,
|
|
autosplit=False,
|
|
use_tp=False,
|
|
model=self.draft_model,
|
|
)
|
|
else:
|
|
logger.info("Loading with autosplit")
|
|
|
|
self.draft_cache = self.create_cache(
|
|
cache_class=draft_cache_class,
|
|
autosplit=True,
|
|
use_tp=False,
|
|
model=self.draft_model,
|
|
)
|
|
|
|
for value in self.draft_model.load_autosplit_gen(
|
|
self.draft_cache,
|
|
reserve_vram=autosplit_reserve,
|
|
last_id_only=True,
|
|
callback_gen=progress_callback,
|
|
):
|
|
if value:
|
|
yield value
|
|
|
|
# Test VRAM allocation with a full-length forward pass
|
|
input_ids = torch.zeros((1, self.config.max_input_len), dtype=torch.long)
|
|
self.draft_model.forward(input_ids, cache=self.cache, preprocess_only=True)
|
|
|
|
# Load vision tower if it exists
|
|
if self.use_vision:
|
|
self.vision_model = ExLlamaV2VisionTower(self.config)
|
|
|
|
for value in self.vision_model.load_gen(callback_gen=progress_callback):
|
|
if value:
|
|
yield value
|
|
|
|
self.model = ExLlamaV2(self.config)
|
|
logger.info("Loading model: " + self.config.model_dir)
|
|
|
|
# Get class of the model cache
|
|
cache_class = self.get_cache_class(self.cache_mode)
|
|
|
|
# Load model with manual split
|
|
# Entrypoint for single GPU users
|
|
if self.use_tp:
|
|
logger.info("Loading with tensor parallel")
|
|
|
|
# GPU split must be None if the array is empty
|
|
# Otherwise the TP loader fails
|
|
for value in self.model.load_tp_gen(
|
|
self.gpu_split or None,
|
|
callback_gen=progress_callback,
|
|
expect_cache_base=cache_class,
|
|
expect_cache_tokens=self.cache_size,
|
|
):
|
|
if value:
|
|
yield value
|
|
elif not self.gpu_split_auto:
|
|
logger.info("Loading with a manual GPU split (or a one GPU setup)")
|
|
|
|
for value in self.model.load_gen(
|
|
self.gpu_split,
|
|
callback_gen=progress_callback,
|
|
):
|
|
if value:
|
|
yield value
|
|
|
|
# Create the model cache
|
|
self.cache = self.create_cache(
|
|
cache_class=cache_class,
|
|
autosplit=self.gpu_split_auto,
|
|
use_tp=self.use_tp,
|
|
model=self.model,
|
|
)
|
|
|
|
# Load model with autosplit (without TP)
|
|
if self.gpu_split_auto and not self.use_tp:
|
|
logger.info("Loading with autosplit")
|
|
|
|
for value in self.model.load_autosplit_gen(
|
|
self.cache,
|
|
reserve_vram=autosplit_reserve,
|
|
last_id_only=True,
|
|
callback_gen=progress_callback,
|
|
):
|
|
if value:
|
|
yield value
|
|
|
|
# Test VRAM allocation with a full-length forward pass
|
|
input_ids = torch.zeros((1, self.config.max_input_len), dtype=torch.long)
|
|
self.model.forward(input_ids, cache=self.cache, preprocess_only=True)
|
|
|
|
# TODO: Maybe make a wrapper class with an ID instead of a utility function
|
|
def get_cache_class(self, cache_mode: str):
|
|
"""Utility function to get a cache class based on user preference."""
|
|
|
|
match cache_mode:
|
|
case "Q4":
|
|
return ExLlamaV2Cache_Q4
|
|
case "Q6":
|
|
return ExLlamaV2Cache_Q6
|
|
case "Q8":
|
|
return ExLlamaV2Cache_Q8
|
|
case _:
|
|
return ExLlamaV2Cache
|
|
|
|
def create_cache(
|
|
self,
|
|
cache_class: ExLlamaV2CacheBase,
|
|
autosplit: bool,
|
|
use_tp: bool,
|
|
model: ExLlamaV2,
|
|
):
|
|
"""Utility function to create a model cache."""
|
|
|
|
if use_tp:
|
|
return ExLlamaV2Cache_TP(
|
|
model,
|
|
base=cache_class,
|
|
max_seq_len=self.cache_size,
|
|
batch_size=1,
|
|
)
|
|
else:
|
|
return cache_class(
|
|
model,
|
|
max_seq_len=self.cache_size,
|
|
lazy=autosplit,
|
|
batch_size=1,
|
|
)
|
|
|
|
async def create_generator(self):
|
|
"""Create and save a Exllama generator class."""
|
|
|
|
try:
|
|
# Don't acquire locks unless a model is loaded
|
|
if self.loaded:
|
|
await self.load_lock.acquire()
|
|
|
|
# Immediately cancel all jobs
|
|
await self.wait_for_jobs(skip_wait=True)
|
|
|
|
# Create new generator
|
|
self.generator = ExLlamaV2DynamicGeneratorAsync(
|
|
model=self.model,
|
|
cache=self.cache,
|
|
draft_model=self.draft_model,
|
|
draft_cache=self.draft_cache,
|
|
tokenizer=self.tokenizer,
|
|
max_batch_size=self.max_batch_size,
|
|
paged=self.paged,
|
|
)
|
|
|
|
# Update the state of the container var
|
|
if self.max_batch_size is None:
|
|
self.max_batch_size = self.generator.generator.max_batch_size
|
|
finally:
|
|
# This means the generator is being recreated
|
|
# The load lock is already released in the load function
|
|
if self.loaded:
|
|
self.load_lock.release()
|
|
|
|
async with self.load_condition:
|
|
self.load_condition.notify_all()
|
|
|
|
def get_loras(self):
|
|
"""Convenience function to get all loras."""
|
|
|
|
return unwrap(self.generator.generator.current_loras, [])
|
|
|
|
async def load_loras(self, lora_directory: pathlib.Path, **kwargs):
|
|
"""Load loras."""
|
|
|
|
loras = unwrap(kwargs.get("loras"), [])
|
|
|
|
try:
|
|
await self.load_lock.acquire()
|
|
|
|
# Wait for existing generation jobs to finish
|
|
await self.wait_for_jobs(kwargs.get("skip_wait"))
|
|
|
|
loras_to_load: List[ExLlamaV2Lora] = []
|
|
success: List[str] = []
|
|
failure: List[str] = []
|
|
|
|
for lora in loras:
|
|
lora_name = lora.get("name")
|
|
lora_scaling = unwrap(lora.get("scaling"), 1.0)
|
|
|
|
if lora_name is None:
|
|
logger.warning(
|
|
"One of your loras does not have a name. Please check your "
|
|
"config.yml! Skipping lora load."
|
|
)
|
|
failure.append(lora_name)
|
|
continue
|
|
|
|
logger.info(f"Adding lora: {lora_name} at scaling {lora_scaling}")
|
|
lora_path = lora_directory / lora_name
|
|
|
|
loras_to_load.append(
|
|
ExLlamaV2Lora.from_directory(self.model, lora_path, lora_scaling)
|
|
)
|
|
logger.info(f"Lora successfully added: {lora_name}")
|
|
success.append(lora_name)
|
|
|
|
self.generator.generator.set_loras(loras_to_load)
|
|
logger.info("All loras successfully loaded")
|
|
|
|
# Return success and failure names
|
|
return {"success": success, "failure": failure}
|
|
finally:
|
|
self.load_lock.release()
|
|
|
|
async with self.load_condition:
|
|
self.load_condition.notify_all()
|
|
|
|
async def unload(self, loras_only: bool = False, **kwargs):
|
|
"""Free all VRAM resources used by the model (and loras)."""
|
|
|
|
# Shutdown immediately unloads and bypasses all locks
|
|
do_shutdown = kwargs.get("shutdown")
|
|
|
|
try:
|
|
if not do_shutdown:
|
|
await self.load_lock.acquire()
|
|
|
|
# Wait for other jobs to finish
|
|
await self.wait_for_jobs(kwargs.get("skip_wait"))
|
|
|
|
# Delete references held in the grammar module
|
|
clear_grammar_func_cache()
|
|
|
|
# Clear the image embedding cache
|
|
clear_image_embedding_cache()
|
|
|
|
# Unload LoRAs
|
|
if self.generator and self.generator.generator.current_loras:
|
|
for lora in self.generator.generator.current_loras:
|
|
lora.unload()
|
|
|
|
self.generator.generator.set_loras([])
|
|
|
|
# Unload the entire model if not just unloading loras
|
|
if not loras_only:
|
|
if self.model:
|
|
self.model.unload()
|
|
self.model = None
|
|
|
|
if self.vision_model:
|
|
self.vision_model.unload()
|
|
|
|
self.vision_model = None
|
|
|
|
if self.draft_model:
|
|
self.draft_model.unload()
|
|
self.draft_model = None
|
|
|
|
self.config = None
|
|
self.cache = None
|
|
self.tokenizer = None
|
|
|
|
# Cleanup the generator from any pending jobs
|
|
if self.generator is not None:
|
|
await self.generator.close()
|
|
self.generator = None
|
|
|
|
# Set all model state variables to False
|
|
self.loaded = False
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
logger.info("Loras unloaded." if loras_only else "Model unloaded.")
|
|
finally:
|
|
if not do_shutdown:
|
|
self.load_lock.release()
|
|
|
|
async with self.load_condition:
|
|
self.load_condition.notify_all()
|
|
|
|
def encode_tokens(self, text: str, **kwargs):
|
|
"""Wrapper to encode tokens from a text string."""
|
|
|
|
mm_embeddings: MultimodalEmbeddingWrapper = kwargs.get("embeddings")
|
|
mm_embeddings_content = mm_embeddings.content if mm_embeddings else []
|
|
|
|
return (
|
|
self.tokenizer.encode(
|
|
text,
|
|
add_bos=unwrap(
|
|
kwargs.get("add_bos_token"), self.hf_model.add_bos_token()
|
|
),
|
|
encode_special_tokens=unwrap(kwargs.get("encode_special_tokens"), True),
|
|
embeddings=mm_embeddings_content,
|
|
)
|
|
.flatten()
|
|
.tolist()
|
|
)
|
|
|
|
def decode_tokens(self, ids: List[int], **kwargs):
|
|
"""Wrapper to decode tokens from a list of IDs"""
|
|
|
|
ids = torch.tensor([ids])
|
|
return self.tokenizer.decode(
|
|
ids,
|
|
decode_special_tokens=unwrap(kwargs.get("decode_special_tokens"), True),
|
|
)[0]
|
|
|
|
def get_special_tokens(self):
|
|
return {
|
|
"bos_token": self.tokenizer.bos_token,
|
|
"eos_token": self.tokenizer.eos_token,
|
|
"pad_token": self.tokenizer.pad_token,
|
|
"unk_token": self.tokenizer.unk_token,
|
|
}
|
|
|
|
def get_logprobs(self, token_ids: torch.Tensor, token_probs: torch.Tensor):
|
|
top_tokens = [
|
|
self.tokenizer.extended_id_to_piece.get(
|
|
index, self.tokenizer.get_id_to_piece_list(True)[index]
|
|
)
|
|
for index in token_ids.flatten().tolist()
|
|
]
|
|
|
|
top_values = torch.log(token_probs).flatten().tolist()
|
|
|
|
# Cannot return -inf in JSON
|
|
cleaned_values = [
|
|
-1000 if value == float("-inf") else value for value in top_values
|
|
]
|
|
|
|
return dict(zip_longest(top_tokens, cleaned_values))
|
|
|
|
async def generate(
|
|
self,
|
|
request_id: str,
|
|
prompt: str,
|
|
params: BaseSamplerRequest,
|
|
abort_event: Optional[asyncio.Event] = None,
|
|
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
|
|
):
|
|
"""Generate a response to a prompt."""
|
|
generations = []
|
|
async for generation in self.stream_generate(
|
|
request_id,
|
|
prompt,
|
|
params,
|
|
abort_event,
|
|
mm_embeddings,
|
|
):
|
|
generations.append(generation)
|
|
|
|
joined_generation = {
|
|
"text": "",
|
|
"prompt_tokens": 0,
|
|
"generation_tokens": 0,
|
|
"tool_calls": None,
|
|
"offset": [],
|
|
"token_probs": {},
|
|
"logprobs": [],
|
|
}
|
|
|
|
if generations:
|
|
# Get finish_reason first and then shift where -1 points to
|
|
if "finish_reason" in generations[-1]:
|
|
finish_reason_gen = generations.pop()
|
|
joined_generation["finish_reason"] = finish_reason_gen.get(
|
|
"finish_reason"
|
|
)
|
|
joined_generation["stop_str"] = finish_reason_gen.get("stop_str")
|
|
else:
|
|
joined_generation["finish_reason"] = "stop"
|
|
|
|
if len(generations) > 0:
|
|
for generation in generations:
|
|
joined_generation["text"] += unwrap(generation.get("text"), "")
|
|
joined_generation["offset"].append(unwrap(generation.get("offset"), -1))
|
|
joined_generation["token_probs"].update(
|
|
unwrap(generation.get("token_probs"), {})
|
|
)
|
|
|
|
# Include empty logprob dicts for index preservation
|
|
joined_generation["logprobs"].append(
|
|
unwrap(generation.get("logprobs"), {})
|
|
)
|
|
|
|
joined_generation["prompt_tokens"] = unwrap(
|
|
generations[-1].get("prompt_tokens"), 0
|
|
)
|
|
joined_generation["generated_tokens"] = unwrap(
|
|
generations[-1].get("generated_tokens"), 0
|
|
)
|
|
|
|
return joined_generation
|
|
|
|
async def stream_generate(
|
|
self,
|
|
request_id: str,
|
|
prompt: str,
|
|
params: BaseSamplerRequest,
|
|
abort_event: Optional[asyncio.Event] = None,
|
|
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
|
|
):
|
|
try:
|
|
# Wait for load lock to be freed before processing
|
|
# Mainly used for loras and other operations where the class is available
|
|
async with self.load_condition:
|
|
await self.load_condition.wait_for(lambda: not self.load_lock.locked())
|
|
|
|
# If the model is being unloaded, don't accept new requests
|
|
if not self.loaded:
|
|
raise RuntimeError(
|
|
"Model is being unloaded. Cannot process new generation requests."
|
|
)
|
|
|
|
# Mark that the job is running
|
|
self.active_job_ids[request_id] = None
|
|
|
|
# Yield from the internal generator
|
|
async for generation_chunk in self.generate_gen(
|
|
request_id=request_id,
|
|
prompt=prompt,
|
|
params=params,
|
|
abort_event=abort_event,
|
|
mm_embeddings=mm_embeddings,
|
|
):
|
|
yield generation_chunk
|
|
finally:
|
|
# Clean up and remove the job from active IDs
|
|
del self.active_job_ids[request_id]
|
|
|
|
def check_unsupported_settings(self, params: BaseSamplerRequest):
|
|
"""
|
|
Check and warn the user if a sampler is unsupported.
|
|
|
|
Meant for dev wheels!
|
|
"""
|
|
|
|
return params
|
|
|
|
def assign_gen_params(
|
|
self,
|
|
params: BaseSamplerRequest,
|
|
gen_settings: ExLlamaV2Sampler.Settings,
|
|
grammar_handler: ExLlamaV2Grammar,
|
|
banned_strings: List[str],
|
|
):
|
|
# Apply settings
|
|
gen_settings.temperature = params.temperature
|
|
gen_settings.temperature_last = params.temperature_last
|
|
gen_settings.smoothing_factor = params.smoothing_factor
|
|
gen_settings.top_k = params.top_k
|
|
gen_settings.top_p = params.top_p
|
|
gen_settings.top_a = params.top_a
|
|
gen_settings.min_p = params.min_p
|
|
gen_settings.tfs = params.tfs
|
|
gen_settings.typical = params.typical
|
|
gen_settings.mirostat = params.mirostat_mode == 2
|
|
gen_settings.skew = params.skew
|
|
|
|
# XTC
|
|
if params.xtc_probability > 0.0:
|
|
gen_settings.xtc_probability = params.xtc_probability
|
|
|
|
# 0.1 is the default for this value
|
|
gen_settings.xtc_threshold = params.xtc_threshold
|
|
|
|
# DynaTemp settings
|
|
max_temp = params.max_temp
|
|
min_temp = params.min_temp
|
|
|
|
if params.max_temp > params.min_temp:
|
|
gen_settings.max_temp = max_temp
|
|
gen_settings.min_temp = min_temp
|
|
gen_settings.temp_exponent = params.temp_exponent
|
|
else:
|
|
# Force to default values
|
|
gen_settings.max_temp = 1.0
|
|
gen_settings.min_temp = 1.0
|
|
gen_settings.temp_exponent = 1.0
|
|
|
|
# Warn if max/min temp values are > 0
|
|
# and if they're less than or equal to each other
|
|
if max_temp < min_temp or (
|
|
1 not in {min_temp, max_temp} and max_temp == min_temp
|
|
):
|
|
logger.warning(
|
|
"Max temp is less than or equal to min temp, skipping DynaTemp."
|
|
)
|
|
|
|
# Default tau and eta fallbacks don't matter if mirostat is off
|
|
gen_settings.mirostat_tau = params.mirostat_tau
|
|
gen_settings.mirostat_eta = params.mirostat_eta
|
|
|
|
# Penalties
|
|
gen_settings.token_repetition_penalty = params.repetition_penalty
|
|
gen_settings.token_frequency_penalty = params.frequency_penalty
|
|
gen_settings.token_presence_penalty = params.presence_penalty
|
|
|
|
# Applies for all penalties despite being called token_repetition_range
|
|
gen_settings.token_repetition_range = unwrap(
|
|
params.penalty_range, self.config.max_seq_len
|
|
)
|
|
|
|
# Always make sure the fallback is 0 if range < 0
|
|
# It's technically fine to use -1, but this just validates the passed
|
|
# fallback
|
|
# Always default to 0 if something goes wrong
|
|
if gen_settings.token_repetition_range < 0:
|
|
fallback_decay = 0
|
|
else:
|
|
fallback_decay = gen_settings.token_repetition_range
|
|
gen_settings.token_repetition_decay = coalesce(
|
|
params.repetition_decay, fallback_decay, 0
|
|
)
|
|
|
|
# DRY options
|
|
dry_multiplier = params.dry_multiplier
|
|
|
|
# < 0 = disabled
|
|
if dry_multiplier > 0:
|
|
gen_settings.dry_multiplier = dry_multiplier
|
|
gen_settings.dry_allowed_length = params.dry_allowed_length
|
|
gen_settings.dry_base = params.dry_base
|
|
|
|
# Exl2 has dry_range as 0 for unlimited unlike -1 for penalty_range
|
|
# Use max_seq_len as the fallback to stay consistent
|
|
gen_settings.dry_range = unwrap(params.dry_range, self.config.max_seq_len)
|
|
|
|
# Tokenize sequence breakers
|
|
if params.dry_sequence_breakers:
|
|
gen_settings.dry_sequence_breakers = {
|
|
self.encode_tokens(s)[-1] for s in params.dry_sequence_breakers
|
|
}
|
|
|
|
# Add JSON schema filter if it exists
|
|
if params.json_schema:
|
|
grammar_handler.add_json_schema_filter(
|
|
params.json_schema, self.model, self.tokenizer
|
|
)
|
|
|
|
# Add regex filter if it exists
|
|
if params.regex_pattern:
|
|
grammar_handler.add_regex_filter(
|
|
params.regex_pattern, self.model, self.tokenizer
|
|
)
|
|
|
|
# Add EBNF filter if it exists
|
|
if params.grammar_string:
|
|
grammar_handler.add_kbnf_filter(
|
|
params.grammar_string, self.model, self.tokenizer
|
|
)
|
|
|
|
# Set banned strings
|
|
banned_strings = params.banned_strings
|
|
if banned_strings and len(grammar_handler.filters) > 0:
|
|
logger.warning(
|
|
"Disabling banned_strings because "
|
|
"they cannot be used with grammar filters."
|
|
)
|
|
|
|
banned_strings = []
|
|
|
|
# Speculative Ngram
|
|
self.generator.speculative_ngram = params.speculative_ngram
|
|
|
|
# Override sampler settings for temp = 0
|
|
if gen_settings.temperature == 0:
|
|
gen_settings.temperature = 1.0
|
|
gen_settings.top_k = 1
|
|
gen_settings.top_p = 0
|
|
gen_settings.typical = 0
|
|
|
|
logger.warning(
|
|
"Temperature is set to 0. Overriding temp, "
|
|
"top_k, top_p, and typical to 1.0, 1, 0, and 0."
|
|
)
|
|
|
|
# Set banned tokens
|
|
if params.banned_tokens:
|
|
gen_settings.disallow_tokens(self.tokenizer, params.banned_tokens)
|
|
|
|
# Set allowed tokens
|
|
if params.allowed_tokens:
|
|
gen_settings.allow_tokens(self.tokenizer, params.allowed_tokens)
|
|
|
|
# Set logit bias
|
|
if params.logit_bias:
|
|
# Create a vocab tensor if it doesn't exist for token biasing
|
|
if gen_settings.token_bias is None:
|
|
padding = -self.tokenizer.config.vocab_size % 32
|
|
gen_settings.token_bias = torch.zeros(
|
|
(self.tokenizer.config.vocab_size + padding,),
|
|
dtype=torch.float,
|
|
)
|
|
|
|
# Map logits to the tensor with their biases
|
|
for token_id, bias in params.logit_bias.items():
|
|
if 0 <= token_id < len(self.tokenizer.get_id_to_piece_list(True)):
|
|
gen_settings.token_bias[token_id] = bias
|
|
else:
|
|
logger.warning(
|
|
f"Logit bias: Token {token_id} not present "
|
|
"in the model's vocab. Skipping."
|
|
)
|
|
|
|
# Adds logprobs to a generation chunk
|
|
def handle_logprobs(self, result: dict, generation: dict):
|
|
top_tokens = unwrap(
|
|
result.get("top_k_tokens"),
|
|
torch.empty((1, 0, 1), dtype=torch.long),
|
|
)
|
|
|
|
top_probs = unwrap(
|
|
result.get("top_k_probs"),
|
|
torch.empty((1, 0, 1), dtype=torch.float),
|
|
)
|
|
|
|
if top_tokens.numel() > 0 and top_probs.numel() > 0:
|
|
logprobs = self.get_logprobs(top_tokens, top_probs)
|
|
generation["logprobs"] = logprobs
|
|
|
|
# The first logprob is the selected token prob
|
|
generation["token_probs"] = {
|
|
token: logprobs[token] for token in list(logprobs.keys())[:1]
|
|
}
|
|
|
|
# Creates and returns a finish chunk
|
|
def handle_finish_chunk(self, result: dict, generation: dict):
|
|
eos_reason = result.get("eos_reason")
|
|
|
|
stop_str = None
|
|
if eos_reason == "max_new_tokens":
|
|
finish_reason = "length"
|
|
else:
|
|
finish_reason = "stop"
|
|
# Grab stop string if stop was the reason
|
|
if eos_reason == "stop_token":
|
|
stop_str = result.get("eos_triggering_token_str")
|
|
elif eos_reason == "stop_string":
|
|
stop_str = result.get("eos_triggering_string")
|
|
|
|
finish_chunk = {
|
|
"prompt_tokens": generation.get("prompt_tokens"),
|
|
"generated_tokens": generation.get("generated_tokens"),
|
|
"finish_reason": finish_reason,
|
|
"stop_str": stop_str,
|
|
}
|
|
|
|
return finish_chunk
|
|
|
|
async def generate_gen(
|
|
self,
|
|
request_id: str,
|
|
prompt: str,
|
|
params: BaseSamplerRequest,
|
|
abort_event: Optional[asyncio.Event] = None,
|
|
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
|
|
):
|
|
"""
|
|
Create generator function for prompt completion.
|
|
|
|
for kwargs, check common/sampling.py
|
|
"""
|
|
|
|
prompts = [prompt]
|
|
gen_settings = ExLlamaV2Sampler.Settings()
|
|
grammar_handler = ExLlamaV2Grammar()
|
|
banned_strings = []
|
|
|
|
self.assign_gen_params(
|
|
params,
|
|
gen_settings,
|
|
grammar_handler,
|
|
banned_strings,
|
|
)
|
|
|
|
# Set CFG scale and negative prompt
|
|
cfg_scale = params.cfg_scale
|
|
negative_prompt = None
|
|
if cfg_scale not in [None, 1.0]:
|
|
if self.paged:
|
|
gen_settings.cfg_scale = cfg_scale
|
|
|
|
# If the negative prompt is empty, use the BOS token
|
|
negative_prompt = unwrap(
|
|
params.negative_prompt, self.tokenizer.bos_token
|
|
)
|
|
|
|
prompts.append(negative_prompt)
|
|
else:
|
|
logger.warning(
|
|
"CFG is currently disabled because paged mode is disabled. "
|
|
"Please use an ampere (30 series) or higher GPU for CFG support."
|
|
)
|
|
|
|
# Dynamically scale penalty range to output tokens
|
|
# Only do this if freq/pres pen is enabled
|
|
# and the repetition range is -1
|
|
auto_scale_penalty_range = (
|
|
gen_settings.token_frequency_penalty != 0
|
|
or gen_settings.token_presence_penalty != 0
|
|
) and gen_settings.token_repetition_range == -1
|
|
|
|
stop_conditions = params.stop
|
|
ban_eos_token = params.ban_eos_token
|
|
|
|
# Set add_bos_token for generation
|
|
add_bos_token = unwrap(params.add_bos_token, self.hf_model.add_bos_token())
|
|
|
|
# Fetch EOS tokens from the HF model if they exist
|
|
eos_tokens = self.hf_model.eos_tokens() or [self.tokenizer.eos_token_id]
|
|
|
|
# Ban the EOS token if specified. If not, append to stop conditions
|
|
# as well.
|
|
# Set this below logging to avoid polluting the stop strings array
|
|
if ban_eos_token:
|
|
gen_settings.disallow_tokens(self.tokenizer, eos_tokens)
|
|
else:
|
|
stop_conditions += eos_tokens
|
|
|
|
# Get multimodal embeddings if present
|
|
mm_embeddings_content = mm_embeddings.content if mm_embeddings else []
|
|
|
|
# Encode both positive and negative prompts
|
|
input_ids = [
|
|
self.tokenizer.encode(
|
|
prompt,
|
|
add_bos=add_bos_token,
|
|
encode_special_tokens=True,
|
|
embeddings=mm_embeddings_content,
|
|
)
|
|
for prompt in prompts
|
|
]
|
|
|
|
# The first index will always be the positive prompt
|
|
context_len = input_ids[0].size(dim=-1)
|
|
|
|
# The second index will be the negative prompt if CFG is enabled
|
|
negative_context_len = input_ids[1].size(dim=-1) if negative_prompt else 0
|
|
|
|
# Automatically set max_tokens to fill up the context
|
|
# This should be an OK default, but may be changed in the future
|
|
max_tokens = unwrap(
|
|
params.max_tokens,
|
|
self.config.max_seq_len - max(context_len, negative_context_len),
|
|
)
|
|
if max_tokens < 1:
|
|
logger.warning("max_tokens must be a positive integer, setting to 1.")
|
|
max_tokens = 1
|
|
|
|
# Determine if the negative context or the context length is bigger
|
|
context_to_check = max(negative_context_len, context_len)
|
|
|
|
# Check total length of prompt against max context length
|
|
if context_to_check > self.config.max_seq_len:
|
|
preamble = (
|
|
"Negative prompt" if negative_context_len > context_len else "Prompt"
|
|
)
|
|
|
|
raise ValueError(
|
|
f"{preamble} length {context_to_check} is greater than "
|
|
f"max_seq_len {self.config.max_seq_len}"
|
|
)
|
|
|
|
# Check total required pages for CFG request to avoid overallocation
|
|
if negative_prompt and (
|
|
sum(
|
|
256 * math.ceil((context + max_tokens) / 256)
|
|
for context in (context_len, negative_context_len)
|
|
)
|
|
> self.cache_size
|
|
):
|
|
raise ValueError(
|
|
f"Total required page size for request "
|
|
f"{context_len} + {negative_context_len} + {max_tokens} * 2 "
|
|
f"is greater than cache_size {self.cache_size}"
|
|
)
|
|
|
|
# Log prompt to console. Add the BOS token if specified
|
|
log_prompt(
|
|
f"{self.tokenizer.bos_token if add_bos_token else ''}{prompt}",
|
|
request_id,
|
|
negative_prompt,
|
|
)
|
|
|
|
# Create and add a new job
|
|
# Don't use the request ID here as there can be multiple jobs per request
|
|
job = ExLlamaV2DynamicJobAsync(
|
|
self.generator,
|
|
input_ids=input_ids,
|
|
max_new_tokens=max_tokens,
|
|
min_new_tokens=params.min_tokens,
|
|
gen_settings=gen_settings,
|
|
stop_conditions=stop_conditions,
|
|
decode_special_tokens=True,
|
|
filters=grammar_handler.filters,
|
|
filter_prefer_eos=bool(grammar_handler.filters),
|
|
return_probs=params.logprobs > 0,
|
|
return_top_tokens=params.logprobs,
|
|
return_logits=params.logprobs > 0,
|
|
banned_strings=banned_strings,
|
|
token_healing=params.token_healing,
|
|
identifier=request_id,
|
|
embeddings=mm_embeddings_content,
|
|
)
|
|
|
|
# Assign the active job to the request ID
|
|
self.active_job_ids[request_id] = job
|
|
|
|
# Save generated tokens and full response
|
|
# Copy over max seq len incase model is unloaded and stored jobs can complete
|
|
# Full response is required for offset calculation
|
|
max_seq_len = self.config.max_seq_len
|
|
generated_tokens = 0
|
|
full_response = ""
|
|
metrics_result = {}
|
|
|
|
# Get the generation status once it's ready
|
|
try:
|
|
async for result in job:
|
|
# Abort if the event is set while streaming
|
|
if abort_event and abort_event.is_set():
|
|
await job.cancel()
|
|
break
|
|
|
|
stage = result.get("stage")
|
|
result_id = result.get("identifier")
|
|
|
|
if stage == "streaming" and result_id == request_id:
|
|
chunk = unwrap(result.get("text"), "")
|
|
full_response += chunk
|
|
|
|
chunk_tokens = result.get("token_ids")
|
|
if chunk_tokens is not None:
|
|
generated_tokens += chunk_tokens.size(dim=0)
|
|
|
|
generation = {
|
|
"text": chunk,
|
|
"prompt_tokens": context_len,
|
|
"generated_tokens": generated_tokens,
|
|
"offset": len(full_response),
|
|
}
|
|
|
|
# Increase penalty range to generated token amount
|
|
if auto_scale_penalty_range:
|
|
gen_settings.token_repetition_range = generated_tokens
|
|
|
|
# Handle logprobs
|
|
if params.logprobs > 0:
|
|
self.handle_logprobs(result, generation)
|
|
|
|
yield generation
|
|
|
|
# Yield a finish chunk when generation is finished
|
|
if result.get("eos"):
|
|
log_response(request_id, full_response)
|
|
|
|
generation = self.handle_finish_chunk(result, generation)
|
|
|
|
# Save the final result for metrics logging
|
|
metrics_result = result
|
|
|
|
yield generation
|
|
break
|
|
except asyncio.CancelledError:
|
|
await job.cancel()
|
|
except Exception as ex:
|
|
# Create a new generator since the current state is broken
|
|
# No need to wait for this to finish
|
|
logger.error(
|
|
"FATAL ERROR with generation. "
|
|
"Attempting to recreate the generator. "
|
|
"If this fails, please restart the server.\n"
|
|
)
|
|
asyncio.ensure_future(self.create_generator())
|
|
|
|
await HealthManager.add_unhealthy_event(ex)
|
|
|
|
raise ex
|
|
finally:
|
|
# Log generation options to console
|
|
# Some options are too large, so log the args instead
|
|
log_generation_params(
|
|
request_id=request_id,
|
|
bos_token_id=self.tokenizer.bos_token_id,
|
|
eos_token_id=eos_tokens,
|
|
prompt=prompt,
|
|
**params.model_dump(exclude={"prompt"}),
|
|
auto_scale_penalty_range=auto_scale_penalty_range,
|
|
)
|
|
|
|
# Log the metrics if present
|
|
if metrics_result:
|
|
log_metrics(
|
|
request_id,
|
|
metrics_result.get("time_enqueued"),
|
|
metrics_result.get("prompt_tokens"),
|
|
metrics_result.get("cached_tokens"),
|
|
metrics_result.get("time_prefill"),
|
|
metrics_result.get("new_tokens"),
|
|
metrics_result.get("time_generate"),
|
|
context_len,
|
|
max_seq_len,
|
|
)
|