tabbyAPI-ollama/endpoints/OAI/app.py
kingbri 6f03be9523 API: Split functions into their own files
Previously, generation function were bundled with the request function
causing the overall code structure and API to look ugly and unreadable.

Split these up and cleanup a lot of the methods that were previously
overlooked in the API itself.

Signed-off-by: kingbri <bdashore3@proton.me>
2024-03-12 23:59:30 -04:00

476 lines
14 KiB
Python

import pathlib
import uvicorn
from fastapi import FastAPI, Depends, HTTPException, Request
from fastapi.concurrency import run_in_threadpool
from fastapi.middleware.cors import CORSMiddleware
from functools import partial
from loguru import logger
from sse_starlette import EventSourceResponse
from common import config, model, gen_logging, sampling
from common.auth import check_admin_key, check_api_key
from common.generators import (
call_with_semaphore,
generate_with_semaphore,
)
from common.logger import UVICORN_LOG_CONFIG
from common.templating import (
get_all_templates,
get_template_from_file,
)
from common.utils import (
handle_request_error,
unwrap,
)
from endpoints.OAI.types.completion import CompletionRequest
from endpoints.OAI.types.chat_completion import ChatCompletionRequest
from endpoints.OAI.types.lora import (
LoraCard,
LoraList,
LoraLoadRequest,
LoraLoadResponse,
)
from endpoints.OAI.types.model import (
ModelCard,
ModelLoadRequest,
ModelCardParameters,
)
from endpoints.OAI.types.sampler_overrides import SamplerOverrideSwitchRequest
from endpoints.OAI.types.template import TemplateList, TemplateSwitchRequest
from endpoints.OAI.types.token import (
TokenEncodeRequest,
TokenEncodeResponse,
TokenDecodeRequest,
TokenDecodeResponse,
)
from endpoints.OAI.utils.chat_completion import (
format_prompt_with_template,
generate_chat_completion,
stream_generate_chat_completion,
)
from endpoints.OAI.utils.completion import (
generate_completion,
stream_generate_completion,
)
from endpoints.OAI.utils.model import get_model_list, stream_model_load
from endpoints.OAI.utils.lora import get_lora_list
app = FastAPI(
title="TabbyAPI",
summary="An OAI compatible exllamav2 API that's both lightweight and fast",
description=(
"This docs page is not meant to send requests! Please use a service "
"like Postman or a frontend UI."
),
)
# ALlow CORS requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
async def check_model_container():
"""FastAPI depends that checks if a model isn't loaded or currently loading."""
if model.container is None or not (
model.container.model_is_loading or model.container.model_loaded
):
error_message = handle_request_error(
"No models are currently loaded.",
exc_info=False,
).error.message
raise HTTPException(400, error_message)
# Model list endpoint
@app.get("/v1/models", dependencies=[Depends(check_api_key)])
@app.get("/v1/model/list", dependencies=[Depends(check_api_key)])
async def list_models():
"""Lists all models in the model directory."""
model_config = config.model_config()
model_dir = unwrap(model_config.get("model_dir"), "models")
model_path = pathlib.Path(model_dir)
draft_model_dir = config.draft_model_config().get("draft_model_dir")
models = get_model_list(model_path.resolve(), draft_model_dir)
if unwrap(model_config.get("use_dummy_models"), False):
models.data.insert(0, ModelCard(id="gpt-3.5-turbo"))
return models
# Currently loaded model endpoint
@app.get(
"/v1/model",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def get_current_model():
"""Returns the currently loaded model."""
model_params = model.container.get_model_parameters()
draft_model_params = model_params.pop("draft", {})
if draft_model_params:
model_params["draft"] = ModelCard(
id=unwrap(draft_model_params.get("name"), "unknown"),
parameters=ModelCardParameters.model_validate(draft_model_params),
)
else:
draft_model_params = None
model_card = ModelCard(
id=unwrap(model_params.pop("name", None), "unknown"),
parameters=ModelCardParameters.model_validate(model_params),
logging=gen_logging.PREFERENCES,
)
if draft_model_params:
draft_card = ModelCard(
id=unwrap(draft_model_params.pop("name", None), "unknown"),
parameters=ModelCardParameters.model_validate(draft_model_params),
)
model_card.parameters.draft = draft_card
return model_card
@app.get("/v1/model/draft/list", dependencies=[Depends(check_api_key)])
async def list_draft_models():
"""Lists all draft models in the model directory."""
draft_model_dir = unwrap(
config.draft_model_config().get("draft_model_dir"), "models"
)
draft_model_path = pathlib.Path(draft_model_dir)
models = get_model_list(draft_model_path.resolve())
return models
# Load model endpoint
@app.post("/v1/model/load", dependencies=[Depends(check_admin_key)])
async def load_model(request: Request, data: ModelLoadRequest):
"""Loads a model into the model container."""
# Verify request parameters
if not data.name:
raise HTTPException(400, "A model name was not provided.")
model_path = pathlib.Path(unwrap(config.model_config().get("model_dir"), "models"))
model_path = model_path / data.name
draft_model_path = None
if data.draft:
if not data.draft.draft_model_name:
raise HTTPException(
400, "draft_model_name was not found inside the draft object."
)
draft_model_path = unwrap(
config.draft_model_config().get("draft_model_dir"), "models"
)
if not model_path.exists():
raise HTTPException(400, "model_path does not exist. Check model_name?")
load_callback = partial(
stream_model_load, request, data, model_path, draft_model_path
)
# Wrap in a semaphore if the queue isn't being skipped
if data.skip_queue:
logger.warning(
"Model load request is skipping the completions queue. "
"Unexpected results may occur."
)
else:
load_callback = partial(generate_with_semaphore, load_callback)
return EventSourceResponse(load_callback())
# Unload model endpoint
@app.post(
"/v1/model/unload",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def unload_model():
"""Unloads the currently loaded model."""
await model.unload_model()
@app.get("/v1/templates", dependencies=[Depends(check_api_key)])
@app.get("/v1/template/list", dependencies=[Depends(check_api_key)])
async def get_templates():
templates = get_all_templates()
template_strings = list(map(lambda template: template.stem, templates))
return TemplateList(data=template_strings)
@app.post(
"/v1/template/switch",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def switch_template(data: TemplateSwitchRequest):
"""Switch the currently loaded template"""
if not data.name:
raise HTTPException(400, "New template name not found.")
try:
template = get_template_from_file(data.name)
model.container.prompt_template = template
except FileNotFoundError as e:
raise HTTPException(400, "Template does not exist. Check the name?") from e
@app.post(
"/v1/template/unload",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def unload_template():
"""Unloads the currently selected template"""
model.container.prompt_template = None
# Sampler override endpoints
@app.get("/v1/sampling/overrides", dependencies=[Depends(check_api_key)])
@app.get("/v1/sampling/override/list", dependencies=[Depends(check_api_key)])
async def list_sampler_overrides():
"""API wrapper to list all currently applied sampler overrides"""
return sampling.overrides
@app.post(
"/v1/sampling/override/switch",
dependencies=[Depends(check_admin_key)],
)
async def switch_sampler_override(data: SamplerOverrideSwitchRequest):
"""Switch the currently loaded override preset"""
if data.preset:
try:
sampling.overrides_from_file(data.preset)
except FileNotFoundError as e:
raise HTTPException(
400, "Sampler override preset does not exist. Check the name?"
) from e
elif data.overrides:
sampling.overrides_from_dict(data.overrides)
else:
raise HTTPException(
400, "A sampler override preset or dictionary wasn't provided."
)
@app.post(
"/v1/sampling/override/unload",
dependencies=[Depends(check_admin_key)],
)
async def unload_sampler_override():
"""Unloads the currently selected override preset"""
sampling.overrides_from_dict({})
# Lora list endpoint
@app.get("/v1/loras", dependencies=[Depends(check_api_key)])
@app.get("/v1/lora/list", dependencies=[Depends(check_api_key)])
async def get_all_loras():
"""Lists all LoRAs in the lora directory."""
lora_path = pathlib.Path(unwrap(config.lora_config().get("lora_dir"), "loras"))
loras = get_lora_list(lora_path.resolve())
return loras
# Currently loaded loras endpoint
@app.get(
"/v1/lora",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def get_active_loras():
"""Returns the currently loaded loras."""
active_loras = LoraList(
data=list(
map(
lambda lora: LoraCard(
id=pathlib.Path(lora.lora_path).parent.name,
scaling=lora.lora_scaling * lora.lora_r / lora.lora_alpha,
),
model.container.active_loras,
)
)
)
return active_loras
# Load lora endpoint
@app.post(
"/v1/lora/load",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def load_lora(data: LoraLoadRequest):
"""Loads a LoRA into the model container."""
if not data.loras:
raise HTTPException(400, "List of loras to load is not found.")
lora_dir = pathlib.Path(unwrap(config.lora_config().get("lora_dir"), "loras"))
if not lora_dir.exists():
raise HTTPException(
400,
"A parent lora directory does not exist. Check your config.yml?",
)
load_callback = partial(
run_in_threadpool, model.load_loras, lora_dir, **data.model_dump()
)
# Wrap in a semaphore if the queue isn't being skipped
if data.skip_queue:
logger.warning(
"Lora load request is skipping the completions queue. "
"Unexpected results may occur."
)
else:
load_callback = partial(call_with_semaphore, load_callback)
load_result = await load_callback()
return LoraLoadResponse(
success=unwrap(load_result.get("success"), []),
failure=unwrap(load_result.get("failure"), []),
)
# Unload lora endpoint
@app.post(
"/v1/lora/unload",
dependencies=[Depends(check_admin_key), Depends(check_model_container)],
)
async def unload_loras():
"""Unloads the currently loaded loras."""
model.unload_loras()
# Encode tokens endpoint
@app.post(
"/v1/token/encode",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def encode_tokens(data: TokenEncodeRequest):
"""Encodes a string into tokens."""
raw_tokens = model.container.encode_tokens(data.text, **data.get_params())
tokens = unwrap(raw_tokens, [])
response = TokenEncodeResponse(tokens=tokens, length=len(tokens))
return response
# Decode tokens endpoint
@app.post(
"/v1/token/decode",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def decode_tokens(data: TokenDecodeRequest):
"""Decodes tokens into a string."""
message = model.container.decode_tokens(data.tokens, **data.get_params())
response = TokenDecodeResponse(text=unwrap(message, ""))
return response
# Completions endpoint
@app.post(
"/v1/completions",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def completion_request(request: Request, data: CompletionRequest):
"""Generates a completion from a prompt."""
model_path = model.container.get_model_path()
if isinstance(data.prompt, list):
data.prompt = "\n".join(data.prompt)
disable_request_streaming = unwrap(
config.developer_config().get("disable_request_streaming"), False
)
if data.stream and not disable_request_streaming:
generator_callback = partial(
stream_generate_completion, request, data, model_path
)
return EventSourceResponse(generate_with_semaphore(generator_callback))
else:
response = await call_with_semaphore(
partial(generate_completion, data, model_path)
)
return response
# Chat completions endpoint
@app.post(
"/v1/chat/completions",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
)
async def chat_completion_request(request: Request, data: ChatCompletionRequest):
"""Generates a chat completion from a prompt."""
if model.container.prompt_template is None:
raise HTTPException(
422,
"This endpoint is disabled because a prompt template is not set.",
)
model_path = model.container.get_model_path()
if isinstance(data.messages, str):
prompt = data.messages
else:
prompt = format_prompt_with_template(data)
disable_request_streaming = unwrap(
config.developer_config().get("disable_request_streaming"), False
)
if data.stream and not disable_request_streaming:
generator_callback = partial(
stream_generate_chat_completion, prompt, request, data, model_path
)
return EventSourceResponse(generate_with_semaphore(generator_callback))
else:
response = await call_with_semaphore(
partial(generate_chat_completion, prompt, request, data, model_path)
)
return response
def start_api(host: str, port: int):
"""Isolated function to start the API server"""
# TODO: Move OAI API to a separate folder
logger.info(f"Developer documentation: http://{host}:{port}/redoc")
logger.info(f"Completions: http://{host}:{port}/v1/completions")
logger.info(f"Chat completions: http://{host}:{port}/v1/chat/completions")
uvicorn.run(
app,
host=host,
port=port,
log_config=UVICORN_LOG_CONFIG,
)