Exllamav2 is currently supported on all GPUs and versions. Therefore, it should be expected that users use the latest version of exllamav2 to get the latest features. Doing this helps reduce checks that don't really serve any purpose. Signed-off-by: kingbri <bdashore3@proton.me>
678 lines
22 KiB
Python
678 lines
22 KiB
Python
"""The main tabbyAPI module. Contains the FastAPI server and endpoints."""
|
|
import pathlib
|
|
import uvicorn
|
|
from asyncio import CancelledError
|
|
from typing import Optional
|
|
from uuid import uuid4
|
|
from jinja2 import TemplateError
|
|
from fastapi import FastAPI, Depends, HTTPException, Request
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from fastapi.responses import StreamingResponse
|
|
from functools import partial
|
|
from packaging import version
|
|
from importlib.metadata import version as package_version
|
|
from progress.bar import IncrementalBar
|
|
|
|
import common.gen_logging as gen_logging
|
|
from backends.exllamav2.model import ExllamaV2Container
|
|
from common.args import convert_args_to_dict, init_argparser
|
|
from common.auth import check_admin_key, check_api_key, load_auth_keys
|
|
from common.config import (
|
|
get_sampling_config,
|
|
override_config_from_args,
|
|
read_config_from_file,
|
|
get_gen_logging_config,
|
|
get_model_config,
|
|
get_draft_model_config,
|
|
get_lora_config,
|
|
get_network_config,
|
|
)
|
|
from common.generators import call_with_semaphore, generate_with_semaphore
|
|
from common.sampling import (
|
|
get_sampler_overrides,
|
|
set_overrides_from_file,
|
|
set_overrides_from_dict,
|
|
)
|
|
from common.templating import (
|
|
get_all_templates,
|
|
get_prompt_from_template,
|
|
get_template_from_file,
|
|
)
|
|
from common.utils import get_generator_error, get_sse_packet, load_progress, unwrap
|
|
from common.logger import init_logger
|
|
from OAI.types.completion import CompletionRequest
|
|
from OAI.types.chat_completion import ChatCompletionRequest
|
|
from OAI.types.lora import LoraCard, LoraList, LoraLoadRequest, LoraLoadResponse
|
|
from OAI.types.model import (
|
|
ModelCard,
|
|
ModelLoadRequest,
|
|
ModelLoadResponse,
|
|
ModelCardParameters,
|
|
)
|
|
from OAI.types.sampler_overrides import SamplerOverrideSwitchRequest
|
|
from OAI.types.template import TemplateList, TemplateSwitchRequest
|
|
from OAI.types.token import (
|
|
TokenEncodeRequest,
|
|
TokenEncodeResponse,
|
|
TokenDecodeRequest,
|
|
TokenDecodeResponse,
|
|
)
|
|
from OAI.utils.completion import (
|
|
create_completion_response,
|
|
create_chat_completion_response,
|
|
create_chat_completion_stream_chunk,
|
|
)
|
|
from OAI.utils.model import get_model_list
|
|
from OAI.utils.lora import get_lora_list
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
app = FastAPI(
|
|
title="TabbyAPI",
|
|
summary="An OAI compatible exllamav2 API that's both lightweight and fast",
|
|
description=(
|
|
"This docs page is not meant to send requests! Please use a service "
|
|
"like Postman or a frontend UI."
|
|
),
|
|
)
|
|
|
|
# Globally scoped variables. Undefined until initalized in main
|
|
MODEL_CONTAINER: Optional[ExllamaV2Container] = None
|
|
|
|
|
|
def _check_model_container():
|
|
if MODEL_CONTAINER is None or MODEL_CONTAINER.model is None:
|
|
raise HTTPException(400, "No models are loaded.")
|
|
|
|
|
|
# ALlow CORS requests
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
|
|
# Model list endpoint
|
|
@app.get("/v1/models", dependencies=[Depends(check_api_key)])
|
|
@app.get("/v1/model/list", dependencies=[Depends(check_api_key)])
|
|
async def list_models():
|
|
"""Lists all models in the model directory."""
|
|
model_config = get_model_config()
|
|
model_dir = unwrap(model_config.get("model_dir"), "models")
|
|
model_path = pathlib.Path(model_dir)
|
|
|
|
draft_model_dir = get_draft_model_config().get("draft_model_dir")
|
|
|
|
models = get_model_list(model_path.resolve(), draft_model_dir)
|
|
if unwrap(model_config.get("use_dummy_models"), False):
|
|
models.data.insert(0, ModelCard(id="gpt-3.5-turbo"))
|
|
|
|
return models
|
|
|
|
|
|
# Currently loaded model endpoint
|
|
@app.get(
|
|
"/v1/model",
|
|
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
|
|
)
|
|
@app.get(
|
|
"/v1/internal/model/info",
|
|
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
|
|
)
|
|
async def get_current_model():
|
|
"""Returns the currently loaded model."""
|
|
model_name = MODEL_CONTAINER.get_model_path().name
|
|
prompt_template = MODEL_CONTAINER.prompt_template
|
|
model_card = ModelCard(
|
|
id=model_name,
|
|
parameters=ModelCardParameters(
|
|
rope_scale=MODEL_CONTAINER.config.scale_pos_emb,
|
|
rope_alpha=MODEL_CONTAINER.config.scale_alpha_value,
|
|
max_seq_len=MODEL_CONTAINER.config.max_seq_len,
|
|
cache_mode="FP8" if MODEL_CONTAINER.cache_fp8 else "FP16",
|
|
prompt_template=prompt_template.name if prompt_template else None,
|
|
num_experts_per_token=MODEL_CONTAINER.config.num_experts_per_token,
|
|
use_cfg=MODEL_CONTAINER.use_cfg,
|
|
),
|
|
logging=gen_logging.PREFERENCES,
|
|
)
|
|
|
|
if MODEL_CONTAINER.draft_config:
|
|
draft_card = ModelCard(
|
|
id=MODEL_CONTAINER.get_model_path(True).name,
|
|
parameters=ModelCardParameters(
|
|
rope_scale=MODEL_CONTAINER.draft_config.scale_pos_emb,
|
|
rope_alpha=MODEL_CONTAINER.draft_config.scale_alpha_value,
|
|
max_seq_len=MODEL_CONTAINER.draft_config.max_seq_len,
|
|
),
|
|
)
|
|
model_card.parameters.draft = draft_card
|
|
|
|
return model_card
|
|
|
|
|
|
@app.get("/v1/model/draft/list", dependencies=[Depends(check_api_key)])
|
|
async def list_draft_models():
|
|
"""Lists all draft models in the model directory."""
|
|
draft_model_dir = unwrap(get_draft_model_config().get("draft_model_dir"), "models")
|
|
draft_model_path = pathlib.Path(draft_model_dir)
|
|
|
|
models = get_model_list(draft_model_path.resolve())
|
|
|
|
return models
|
|
|
|
|
|
# Load model endpoint
|
|
@app.post("/v1/model/load", dependencies=[Depends(check_admin_key)])
|
|
async def load_model(request: Request, data: ModelLoadRequest):
|
|
"""Loads a model into the model container."""
|
|
global MODEL_CONTAINER
|
|
|
|
if MODEL_CONTAINER and MODEL_CONTAINER.model:
|
|
raise HTTPException(400, "A model is already loaded! Please unload it first.")
|
|
|
|
if not data.name:
|
|
raise HTTPException(400, "model_name not found.")
|
|
|
|
model_path = pathlib.Path(unwrap(get_model_config().get("model_dir"), "models"))
|
|
model_path = model_path / data.name
|
|
|
|
load_data = data.model_dump()
|
|
|
|
if data.draft:
|
|
if not data.draft.draft_model_name:
|
|
raise HTTPException(
|
|
400, "draft_model_name was not found inside the draft object."
|
|
)
|
|
|
|
load_data["draft"]["draft_model_dir"] = unwrap(
|
|
get_draft_model_config().get("draft_model_dir"), "models"
|
|
)
|
|
|
|
if not model_path.exists():
|
|
raise HTTPException(400, "model_path does not exist. Check model_name?")
|
|
|
|
MODEL_CONTAINER = ExllamaV2Container(model_path.resolve(), False, **load_data)
|
|
|
|
async def generator():
|
|
"""Generator for the loading process."""
|
|
|
|
model_type = "draft" if MODEL_CONTAINER.draft_config else "model"
|
|
load_status = MODEL_CONTAINER.load_gen(load_progress)
|
|
|
|
try:
|
|
for module, modules in load_status:
|
|
if await request.is_disconnected():
|
|
break
|
|
|
|
if module == 0:
|
|
loading_bar: IncrementalBar = IncrementalBar("Modules", max=modules)
|
|
elif module == modules:
|
|
loading_bar.next()
|
|
loading_bar.finish()
|
|
|
|
response = ModelLoadResponse(
|
|
model_type=model_type,
|
|
module=module,
|
|
modules=modules,
|
|
status="finished",
|
|
)
|
|
|
|
yield get_sse_packet(response.model_dump_json())
|
|
|
|
# Switch to model progress if the draft model is loaded
|
|
if MODEL_CONTAINER.draft_config:
|
|
model_type = "model"
|
|
else:
|
|
loading_bar.next()
|
|
|
|
response = ModelLoadResponse(
|
|
model_type=model_type,
|
|
module=module,
|
|
modules=modules,
|
|
status="processing",
|
|
)
|
|
|
|
yield get_sse_packet(response.model_dump_json())
|
|
except CancelledError:
|
|
logger.error(
|
|
"Model load cancelled by user. "
|
|
"Please make sure to run unload to free up resources."
|
|
)
|
|
except Exception as exc:
|
|
yield get_generator_error(str(exc))
|
|
|
|
return StreamingResponse(generator(), media_type="text/event-stream")
|
|
|
|
|
|
# Unload model endpoint
|
|
@app.post(
|
|
"/v1/model/unload",
|
|
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
|
|
)
|
|
async def unload_model():
|
|
"""Unloads the currently loaded model."""
|
|
global MODEL_CONTAINER
|
|
|
|
MODEL_CONTAINER.unload()
|
|
MODEL_CONTAINER = None
|
|
|
|
|
|
@app.get("/v1/templates", dependencies=[Depends(check_api_key)])
|
|
@app.get("/v1/template/list", dependencies=[Depends(check_api_key)])
|
|
async def get_templates():
|
|
templates = get_all_templates()
|
|
template_strings = list(map(lambda template: template.stem, templates))
|
|
return TemplateList(data=template_strings)
|
|
|
|
|
|
@app.post(
|
|
"/v1/template/switch",
|
|
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
|
|
)
|
|
async def switch_template(data: TemplateSwitchRequest):
|
|
"""Switch the currently loaded template"""
|
|
if not data.name:
|
|
raise HTTPException(400, "New template name not found.")
|
|
|
|
try:
|
|
template = get_template_from_file(data.name)
|
|
MODEL_CONTAINER.prompt_template = template
|
|
except FileNotFoundError as e:
|
|
raise HTTPException(400, "Template does not exist. Check the name?") from e
|
|
|
|
|
|
@app.post(
|
|
"/v1/template/unload",
|
|
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
|
|
)
|
|
async def unload_template():
|
|
"""Unloads the currently selected template"""
|
|
|
|
MODEL_CONTAINER.prompt_template = None
|
|
|
|
|
|
# Sampler override endpoints
|
|
@app.get("/v1/sampling/overrides", dependencies=[Depends(check_api_key)])
|
|
@app.get("/v1/sampling/override/list", dependencies=[Depends(check_api_key)])
|
|
async def list_sampler_overrides():
|
|
"""API wrapper to list all currently applied sampler overrides"""
|
|
|
|
return get_sampler_overrides()
|
|
|
|
|
|
@app.post(
|
|
"/v1/sampling/override/switch",
|
|
dependencies=[Depends(check_admin_key)],
|
|
)
|
|
async def switch_sampler_override(data: SamplerOverrideSwitchRequest):
|
|
"""Switch the currently loaded override preset"""
|
|
|
|
if data.preset:
|
|
try:
|
|
set_overrides_from_file(data.preset)
|
|
except FileNotFoundError as e:
|
|
raise HTTPException(
|
|
400, "Sampler override preset does not exist. Check the name?"
|
|
) from e
|
|
elif data.overrides:
|
|
set_overrides_from_dict(data.overrides)
|
|
else:
|
|
raise HTTPException(
|
|
400, "A sampler override preset or dictionary wasn't provided."
|
|
)
|
|
|
|
|
|
@app.post(
|
|
"/v1/sampling/override/unload",
|
|
dependencies=[Depends(check_admin_key)],
|
|
)
|
|
async def unload_sampler_override():
|
|
"""Unloads the currently selected override preset"""
|
|
|
|
set_overrides_from_dict({})
|
|
|
|
|
|
# Lora list endpoint
|
|
@app.get("/v1/loras", dependencies=[Depends(check_api_key)])
|
|
@app.get("/v1/lora/list", dependencies=[Depends(check_api_key)])
|
|
async def get_all_loras():
|
|
"""Lists all LoRAs in the lora directory."""
|
|
lora_path = pathlib.Path(unwrap(get_lora_config().get("lora_dir"), "loras"))
|
|
loras = get_lora_list(lora_path.resolve())
|
|
|
|
return loras
|
|
|
|
|
|
# Currently loaded loras endpoint
|
|
@app.get(
|
|
"/v1/lora",
|
|
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
|
|
)
|
|
async def get_active_loras():
|
|
"""Returns the currently loaded loras."""
|
|
active_loras = LoraList(
|
|
data=list(
|
|
map(
|
|
lambda lora: LoraCard(
|
|
id=pathlib.Path(lora.lora_path).parent.name,
|
|
scaling=lora.lora_scaling * lora.lora_r / lora.lora_alpha,
|
|
),
|
|
MODEL_CONTAINER.active_loras,
|
|
)
|
|
)
|
|
)
|
|
|
|
return active_loras
|
|
|
|
|
|
# Load lora endpoint
|
|
@app.post(
|
|
"/v1/lora/load",
|
|
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
|
|
)
|
|
async def load_lora(data: LoraLoadRequest):
|
|
"""Loads a LoRA into the model container."""
|
|
if not data.loras:
|
|
raise HTTPException(400, "List of loras to load is not found.")
|
|
|
|
lora_dir = pathlib.Path(unwrap(get_lora_config().get("lora_dir"), "loras"))
|
|
if not lora_dir.exists():
|
|
raise HTTPException(
|
|
400,
|
|
"A parent lora directory does not exist. Check your config.yml?",
|
|
)
|
|
|
|
# Clean-up existing loras if present
|
|
if len(MODEL_CONTAINER.active_loras) > 0:
|
|
MODEL_CONTAINER.unload(True)
|
|
|
|
result = MODEL_CONTAINER.load_loras(lora_dir, **data.model_dump())
|
|
return LoraLoadResponse(
|
|
success=unwrap(result.get("success"), []),
|
|
failure=unwrap(result.get("failure"), []),
|
|
)
|
|
|
|
|
|
# Unload lora endpoint
|
|
@app.post(
|
|
"/v1/lora/unload",
|
|
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
|
|
)
|
|
async def unload_loras():
|
|
"""Unloads the currently loaded loras."""
|
|
MODEL_CONTAINER.unload(True)
|
|
|
|
|
|
# Encode tokens endpoint
|
|
@app.post(
|
|
"/v1/token/encode",
|
|
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
|
|
)
|
|
async def encode_tokens(data: TokenEncodeRequest):
|
|
"""Encodes a string into tokens."""
|
|
raw_tokens = MODEL_CONTAINER.get_tokens(data.text, None, **data.get_params())
|
|
|
|
# Have to use this if check otherwise Torch's tensors error out
|
|
# with a boolean issue
|
|
tokens = raw_tokens[0].tolist() if raw_tokens is not None else []
|
|
response = TokenEncodeResponse(tokens=tokens, length=len(tokens))
|
|
|
|
return response
|
|
|
|
|
|
# Decode tokens endpoint
|
|
@app.post(
|
|
"/v1/token/decode",
|
|
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
|
|
)
|
|
async def decode_tokens(data: TokenDecodeRequest):
|
|
"""Decodes tokens into a string."""
|
|
message = MODEL_CONTAINER.get_tokens(None, data.tokens, **data.get_params())
|
|
response = TokenDecodeResponse(text=unwrap(message, ""))
|
|
|
|
return response
|
|
|
|
|
|
# Completions endpoint
|
|
@app.post(
|
|
"/v1/completions",
|
|
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
|
|
)
|
|
async def generate_completion(request: Request, data: CompletionRequest):
|
|
"""Generates a completion from a prompt."""
|
|
model_path = MODEL_CONTAINER.get_model_path()
|
|
|
|
if isinstance(data.prompt, list):
|
|
data.prompt = "\n".join(data.prompt)
|
|
|
|
if data.stream:
|
|
|
|
async def generator():
|
|
"""Generator for the generation process."""
|
|
try:
|
|
new_generation = MODEL_CONTAINER.generate_gen(
|
|
data.prompt, **data.to_gen_params()
|
|
)
|
|
for part, prompt_tokens, completion_tokens in new_generation:
|
|
if await request.is_disconnected():
|
|
break
|
|
|
|
response = create_completion_response(
|
|
part, prompt_tokens, completion_tokens, model_path.name
|
|
)
|
|
|
|
yield get_sse_packet(response.model_dump_json())
|
|
|
|
# Yield a finish response on successful generation
|
|
yield get_sse_packet("[DONE]")
|
|
except CancelledError:
|
|
logger.error("Completion request cancelled by user.")
|
|
except Exception as exc:
|
|
yield get_generator_error(str(exc))
|
|
|
|
return StreamingResponse(
|
|
generate_with_semaphore(generator), media_type="text/event-stream"
|
|
)
|
|
|
|
response_text, prompt_tokens, completion_tokens = await call_with_semaphore(
|
|
partial(MODEL_CONTAINER.generate, data.prompt, **data.to_gen_params())
|
|
)
|
|
|
|
response = create_completion_response(
|
|
response_text, prompt_tokens, completion_tokens, model_path.name
|
|
)
|
|
|
|
return response
|
|
|
|
|
|
# Chat completions endpoint
|
|
@app.post(
|
|
"/v1/chat/completions",
|
|
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
|
|
)
|
|
async def generate_chat_completion(request: Request, data: ChatCompletionRequest):
|
|
"""Generates a chat completion from a prompt."""
|
|
if MODEL_CONTAINER.prompt_template is None:
|
|
raise HTTPException(
|
|
422,
|
|
"This endpoint is disabled because a prompt template is not set.",
|
|
)
|
|
|
|
model_path = MODEL_CONTAINER.get_model_path()
|
|
|
|
if isinstance(data.messages, str):
|
|
prompt = data.messages
|
|
else:
|
|
try:
|
|
special_tokens_dict = MODEL_CONTAINER.get_special_tokens(
|
|
unwrap(data.add_bos_token, True),
|
|
unwrap(data.ban_eos_token, False),
|
|
)
|
|
prompt = get_prompt_from_template(
|
|
data.messages,
|
|
MODEL_CONTAINER.prompt_template,
|
|
data.add_generation_prompt,
|
|
special_tokens_dict,
|
|
)
|
|
except KeyError as exc:
|
|
raise HTTPException(
|
|
400,
|
|
"Could not find a Conversation from prompt template "
|
|
f"'{MODEL_CONTAINER.prompt_template.name}'. "
|
|
"Check your spelling?",
|
|
) from exc
|
|
except TemplateError as exc:
|
|
raise HTTPException(
|
|
400,
|
|
f"TemplateError: {str(exc)}",
|
|
) from exc
|
|
|
|
if data.stream:
|
|
const_id = f"chatcmpl-{uuid4().hex}"
|
|
|
|
async def generator():
|
|
"""Generator for the generation process."""
|
|
try:
|
|
new_generation = MODEL_CONTAINER.generate_gen(
|
|
prompt, **data.to_gen_params()
|
|
)
|
|
for part, _, _ in new_generation:
|
|
if await request.is_disconnected():
|
|
break
|
|
|
|
response = create_chat_completion_stream_chunk(
|
|
const_id, part, model_path.name
|
|
)
|
|
|
|
yield get_sse_packet(response.model_dump_json())
|
|
|
|
# Yield a finish response on successful generation
|
|
finish_response = create_chat_completion_stream_chunk(
|
|
const_id, finish_reason="stop"
|
|
)
|
|
|
|
yield get_sse_packet(finish_response.model_dump_json())
|
|
except CancelledError:
|
|
logger.error("Chat completion cancelled by user.")
|
|
except Exception as exc:
|
|
yield get_generator_error(str(exc))
|
|
|
|
return StreamingResponse(
|
|
generate_with_semaphore(generator), media_type="text/event-stream"
|
|
)
|
|
|
|
response_text, prompt_tokens, completion_tokens = await call_with_semaphore(
|
|
partial(MODEL_CONTAINER.generate, prompt, **data.to_gen_params())
|
|
)
|
|
|
|
response = create_chat_completion_response(
|
|
response_text, prompt_tokens, completion_tokens, model_path.name
|
|
)
|
|
|
|
return response
|
|
|
|
|
|
def entrypoint(args: Optional[dict] = None):
|
|
"""Entry function for program startup"""
|
|
global MODEL_CONTAINER
|
|
|
|
# Check exllamav2 version and give a descriptive error if it's too old
|
|
required_exl_version = "0.0.12"
|
|
current_exl_version = package_version("exllamav2").split("+")[0]
|
|
|
|
if version.parse(current_exl_version) < version.parse(required_exl_version):
|
|
raise SystemExit(
|
|
f"TabbyAPI requires ExLlamaV2 {required_exl_version} "
|
|
f"or greater. Your current version is {current_exl_version}.\n"
|
|
"Please upgrade your environment by running a start script "
|
|
"(start.bat or start.sh)\n\n"
|
|
"Or you can manually run a requirements update "
|
|
"using the following command:\n\n"
|
|
"For CUDA 12.1:\n"
|
|
"pip install --upgrade -r requirements.txt\n\n"
|
|
"For CUDA 11.8:\n"
|
|
"pip install --upgrade -r requirements-cu118.txt\n\n"
|
|
"For ROCm:\n"
|
|
"pip install --upgrade -r requirements-amd.txt\n\n"
|
|
)
|
|
|
|
# Load from YAML config
|
|
read_config_from_file(pathlib.Path("config.yml"))
|
|
|
|
# Parse and override config from args
|
|
if args is None:
|
|
parser = init_argparser()
|
|
args = convert_args_to_dict(parser.parse_args(), parser)
|
|
|
|
override_config_from_args(args)
|
|
|
|
network_config = get_network_config()
|
|
|
|
# Initialize auth keys
|
|
load_auth_keys(unwrap(network_config.get("disable_auth"), False))
|
|
|
|
# Override the generation log options if given
|
|
log_config = get_gen_logging_config()
|
|
if log_config:
|
|
gen_logging.update_from_dict(log_config)
|
|
|
|
gen_logging.broadcast_status()
|
|
|
|
# Set sampler parameter overrides if provided
|
|
sampling_config = get_sampling_config()
|
|
sampling_override_preset = sampling_config.get("override_preset")
|
|
if sampling_override_preset:
|
|
try:
|
|
set_overrides_from_file(sampling_override_preset)
|
|
except FileNotFoundError as e:
|
|
logger.warning(str(e))
|
|
|
|
# If an initial model name is specified, create a container
|
|
# and load the model
|
|
model_config = get_model_config()
|
|
model_name = model_config.get("model_name")
|
|
if model_name:
|
|
model_path = pathlib.Path(unwrap(model_config.get("model_dir"), "models"))
|
|
model_path = model_path / model_name
|
|
|
|
MODEL_CONTAINER = ExllamaV2Container(
|
|
model_path.resolve(), False, **model_config
|
|
)
|
|
load_status = MODEL_CONTAINER.load_gen(load_progress)
|
|
for module, modules in load_status:
|
|
if module == 0:
|
|
loading_bar: IncrementalBar = IncrementalBar("Modules", max=modules)
|
|
elif module == modules:
|
|
loading_bar.next()
|
|
loading_bar.finish()
|
|
else:
|
|
loading_bar.next()
|
|
|
|
# Load loras after loading the model
|
|
lora_config = get_lora_config()
|
|
if lora_config.get("loras"):
|
|
lora_dir = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras"))
|
|
MODEL_CONTAINER.load_loras(lora_dir.resolve(), **lora_config)
|
|
|
|
host = unwrap(network_config.get("host"), "127.0.0.1")
|
|
port = unwrap(network_config.get("port"), 5000)
|
|
|
|
# TODO: Move OAI API to a separate folder
|
|
logger.info(f"Developer documentation: http://{host}:{port}/docs")
|
|
logger.info(f"Completions: http://{host}:{port}/v1/completions")
|
|
logger.info(f"Chat completions: http://{host}:{port}/v1/chat/completions")
|
|
|
|
uvicorn.run(
|
|
app,
|
|
host=host,
|
|
port=port,
|
|
log_level="debug",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
entrypoint()
|