tabbyAPI-ollama/backends/exllamav3/model.py
kingbri 2913ce29fc API: Add timings to usage stats
It's useful for the client to know what the T/s and total time for
generation are per-request.

Works with both completions and chat completions.

Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
2025-06-17 22:54:51 -04:00

991 lines
33 KiB
Python

import asyncio
import gc
import pathlib
import re
from typing import (
Any,
AsyncIterator,
Dict,
List,
Optional,
)
import torch
from exllamav3 import (
AsyncGenerator,
AsyncJob,
Cache,
Config,
Model,
Tokenizer,
)
from exllamav3.cache import CacheLayer_quant
from loguru import logger
from backends.base_model_container import BaseModelContainer
from backends.exllamav3.sampler import ExllamaV3SamplerBuilder
from common.concurrency import iterate_in_threadpool
from common.gen_logging import (
log_generation_params,
log_metrics,
log_prompt,
)
from common.hardware import hardware_supports_flash_attn
from common.health import HealthManager
from common.multimodal import MultimodalEmbeddingWrapper
from common.optional_dependencies import check_package_version
from common.sampling import BaseSamplerRequest
from common.templating import PromptTemplate, find_prompt_template
from common.transformers_utils import HFModel
from common.utils import coalesce, unwrap
from endpoints.core.types.model import ModelCard, ModelCardParameters
class ExllamaV3Container(BaseModelContainer):
"""Abstract base class for model containers."""
# Exposed model information
model_dir: pathlib.Path = pathlib.Path("models")
prompt_template: Optional[PromptTemplate] = None
# HF Model instance
hf_model: HFModel
# Load synchronization
# The bool is a master switch for accepting requests
# The lock keeps load tasks sequential
# The condition notifies any waiting tasks
active_job_ids: Dict[str, Any] = {}
loaded: bool = False
load_lock: asyncio.Lock = asyncio.Lock()
load_condition: asyncio.Condition = asyncio.Condition()
# Exl3 vars
model: Optional[Model] = None
cache: Optional[Cache] = None
draft_model: Optional[Model] = None
draft_cache: Optional[Cache] = None
tokenizer: Optional[Tokenizer] = None
config: Optional[Config] = None
draft_config: Optional[Config] = None
generator: Optional[AsyncGenerator] = None
vision_model: Optional[Model] = None
# Class-specific vars
gpu_split: Optional[List[float]] = None
gpu_split_auto: bool = True
autosplit_reserve: Optional[List[float]] = [96 / 1024]
use_tp: bool = False
max_seq_len: int = 4096
cache_size: int = 4096
cache_mode: str = "FP16"
draft_cache_mode: str = "FP16"
chunk_size: int = 2048
max_batch_size: Optional[int] = None
# Required methods
@classmethod
async def create(cls, model_directory: pathlib.Path, hf_model: HFModel, **kwargs):
"""
Asynchronously creates and initializes a model container instance.
Args:
model_directory: Path to the model files.
**kwargs: Backend-specific configuration options.
Returns:
An instance of the implementing class.
"""
self = cls()
# Make sure ExllamaV3 is up to date
check_package_version("exllamav3", "0.0.4")
logger.warning(
"ExllamaV3 is currently in an alpha state. "
"Please note that all config options may not work."
)
self.model_dir = model_directory
self.hf_model = hf_model
self.config = Config.from_directory(str(model_directory.resolve()))
self.model = Model.from_config(self.config)
self.tokenizer = Tokenizer.from_config(self.config)
# Prepare vision model if requested in config
self.use_vision = kwargs.get("vision")
if self.use_vision and "vision" in self.config.model_classes:
self.vision_model = Model.from_config(self.config, component="vision")
else:
logger.warning(
"The provided model does not have vision capabilities that are "
"supported by ExllamaV3. "
"Vision input is disabled."
)
self.vision_model = None
self.use_vision = False
# Fallback to 4096 since exl3 can't fetch from HF's config.json
self.max_seq_len = unwrap(kwargs.get("max_seq_len"), 4096)
# Prepare the draft model config if necessary
draft_args = unwrap(kwargs.get("draft_model"), {})
draft_model_name = draft_args.get("draft_model_name")
self.use_draft_model = draft_args and draft_model_name
# Always disable draft if params are incorrectly configured
if draft_args and draft_model_name is None:
logger.warning(
"Draft model is disabled because a model name "
"wasn't provided. Please check your config.yml!"
)
self.use_draft_model = False
if self.use_draft_model:
draft_model_path = pathlib.Path(
unwrap(draft_args.get("draft_model_dir"), "models")
)
draft_model_path = draft_model_path / draft_model_name
self.draft_gpu_split = unwrap(draft_args.get("draft_gpu_split"), [])
self.draft_model_dir = draft_model_path
self.draft_config = Config.from_directory(str(draft_model_path.resolve()))
self.draft_model = Model.from_config(self.draft_config)
logger.info(f"Using draft model: {str(draft_model_path.resolve())}")
else:
self.draft_model = None
self.draft_cache = None
# Turn off GPU split if the user is using 1 GPU
gpu_count = torch.cuda.device_count()
gpu_split_auto = unwrap(kwargs.get("gpu_split_auto"), True)
gpu_split = unwrap(kwargs.get("gpu_split"), None)
gpu_device_list = list(range(0, gpu_count))
# Set GPU split options
if gpu_count == 1:
self.gpu_split_auto = False
logger.info("Disabling GPU split because one GPU is in use.")
else:
# TODO: Set tensor parallel
# Set GPU split options
# Enable manual GPU split if provided
if gpu_split:
self.gpu_split = gpu_split
# Causes crash if set with GPU split
# TODO: Remove when fixed in exllama upstream
self.autosplit_reserve = None
gpu_device_list = [
device_idx
for device_idx, memory in enumerate(self.gpu_split)
if memory > 0
]
elif gpu_split_auto and not self.use_tp:
# Otherwise fallback to autosplit settings
self.gpu_split_auto = gpu_split_auto
autosplit_reserve_megabytes = unwrap(
kwargs.get("autosplit_reserve"), [96]
)
# Reserve VRAM for each GPU
self.autosplit_reserve = [
value / 1024 for value in autosplit_reserve_megabytes
]
if not hardware_supports_flash_attn(gpu_device_list):
gpu_unsupported_message = (
"Unable to run ExllamaV3 because an unsupported GPU is "
"found in this configuration. \n"
"All GPUs must be ampere "
"(30 series) or newer. AMD GPUs are not supported."
)
logger.warning(gpu_unsupported_message)
raise RuntimeError(gpu_unsupported_message)
# Cache
user_cache_size = unwrap(kwargs.get("cache_size"), self.max_seq_len)
self.cache_size = self.adjust_cache_size(user_cache_size)
self.cache_mode = unwrap(kwargs.get("cache_mode"), "FP16")
self.cache = self.create_cache(self.cache_mode, self.model)
# Draft cache
if self.use_draft_model:
# Set draft cache mode
self.draft_cache_mode = unwrap(draft_args.get("draft_cache_mode"), "FP16")
self.draft_cache = self.create_cache(
self.draft_cache_mode, self.draft_model
)
# Max batch size
self.max_batch_size = unwrap(kwargs.get("max_batch_size"), 256)
# Make sure chunk size is >= 256, keep near or below max seq len
user_chunk_size = unwrap(kwargs.get("chunk_size"), 2048)
self.chunk_size = self.adjust_chunk_size(user_chunk_size)
# Template setup
self.prompt_template = await find_prompt_template(
kwargs.get("prompt_template"), model_directory
)
# Catch all for template lookup errors
if self.prompt_template:
logger.info(
f'Using template "{self.prompt_template.name}" for chat completions.'
)
else:
logger.warning(
"Chat completions are disabled because a prompt "
"template wasn't provided or auto-detected."
)
return self
def adjust_cache_size(self, cache_size):
if cache_size < self.max_seq_len:
logger.warning(
f"The given cache_size ({cache_size}) is smaller than the "
"desired context length.\n"
"Overriding cache_size to max_seq_len. "
)
cache_size = self.max_seq_len
# Enforce a multiple of 256 for cache size
# Overestimate to ensure that the cache isn't below max_seq_len
cache_remainder = cache_size % 256
if cache_remainder != 0:
rounded_cache_size = int(256 * ((cache_size - cache_remainder) / 256 + 1))
logger.warning(
f"The given cache size ({cache_size}) is "
"not a multiple of 256.\n"
"Overriding cache_size with an overestimated value of "
f"{rounded_cache_size} tokens."
)
cache_size = rounded_cache_size
# Warn user if cache size may be inadequate for CFG
if cache_size < 2 * self.max_seq_len:
logger.warning(
f"The given cache_size ({cache_size}) is less than 2 * max_seq_len "
"and may be too small for requests using CFG. \n"
"Ignore this warning if you do not plan on using CFG."
)
return cache_size
def adjust_chunk_size(self, user_chunk_size: int):
chunk_size = sorted((256, user_chunk_size, self.max_seq_len))[1]
chunk_remainder = chunk_size % 256
if chunk_remainder != 0:
rounded_chunk_size = int(256 * ((chunk_size - chunk_remainder) / 256 + 1))
logger.warning(
f"The given chunk size ({chunk_size}) is "
"not a multiple of 256.\n"
"Overriding chunk_size with an overestimated value of "
f"{rounded_chunk_size} tokens."
)
chunk_size = rounded_chunk_size
return chunk_size
def create_cache(self, raw_cache_mode: str, model: Model):
# Cast exl2 types to exl3
match raw_cache_mode:
case "Q4":
raw_cache_mode = "4,4"
case "Q6":
raw_cache_mode = "6,6"
case "Q8":
raw_cache_mode = "8,8"
split_cache_mode = re.search(r"^([2-8])\s*,\s*([2-8])$", raw_cache_mode)
if split_cache_mode:
draft_k_bits = int(split_cache_mode.group(1))
draft_v_bits = int(split_cache_mode.group(2))
cache = Cache(
model,
max_num_tokens=self.cache_size,
layer_type=CacheLayer_quant,
k_bits=draft_k_bits,
v_bits=draft_v_bits,
)
else:
cache = Cache(model, max_num_tokens=self.cache_size)
return cache
def model_info(self) -> ModelCard:
"""
Returns a dictionary of the current model's configuration parameters.
Returns:
Model parameters provided by the backend
"""
model_params = ModelCardParameters(
max_seq_len=self.max_seq_len,
cache_size=self.cache_size,
max_batch_size=self.max_batch_size,
cache_mode=self.cache_mode,
chunk_size=self.chunk_size,
use_vision=self.use_vision,
)
if self.prompt_template:
model_params.prompt_template = self.prompt_template.name
model_params.prompt_template_content = self.prompt_template.raw_template
model_card = ModelCard(
id=self.model_dir.name,
parameters=model_params,
)
return model_card
async def wait_for_jobs(self, skip_wait: bool = False):
"""
Polling to wait for any active generation jobs to complete.
Args:
skip_wait: If True, cancel jobs immediately instead of waiting.
"""
if not self.generator:
return
# Immediately abort all jobs if asked
if skip_wait:
logger.warning(
"Immediately terminating all jobs. "
"Clients will have their requests cancelled.\n"
)
for job in self.active_job_ids.values():
if job:
await job.cancel()
while len(self.active_job_ids) > 0:
await asyncio.sleep(0.01)
async def load(self, progress_callback=None, **kwargs):
"""
Loads the model into memory.
Args:
progress_callback: Optional callback for progress updates.
**kwargs: Additional loading options.
"""
async for _ in self.load_gen(progress_callback):
pass
async def load_gen(self, progress_callback=None, **kwargs):
"""
Loads the model into memory, yielding progress updates.
Args:
progress_callback: Optional callback for progress updates.
**kwargs: Additional loading options.
Yields:
Progress updates
"""
try:
await self.load_lock.acquire()
# Wait for existing generation jobs to finish
await self.wait_for_jobs(kwargs.get("skip_wait"))
generator = self.load_model_sync(progress_callback)
async for value in iterate_in_threadpool(generator):
yield value
# Create async generator
await self.create_generator()
# Clean up any extra vram usage from torch and cuda
# (Helps reduce VRAM bottlenecking on Windows)
gc.collect()
torch.cuda.empty_cache()
# Cleanup and update model load state
self.loaded = True
logger.info("Model successfully loaded.")
finally:
self.load_lock.release()
async with self.load_condition:
self.load_condition.notify_all()
@torch.inference_mode()
def load_model_sync(self, progress_callback=None):
if self.use_vision:
for value in self.vision_model.load_gen(
reserve_per_device=self.autosplit_reserve,
callback=progress_callback,
):
if value:
yield value
if self.use_draft_model:
for value in self.draft_model.load_gen(
reserve_per_device=self.autosplit_reserve,
callback=progress_callback,
):
if value:
yield value
for value in self.model.load_gen(
reserve_per_device=self.autosplit_reserve,
use_per_device=self.gpu_split,
callback=progress_callback,
):
if value:
yield value
async def create_generator(self):
"""Create and save a Exllama generator class."""
try:
# Don't acquire locks unless a model is loaded
if self.loaded:
await self.load_lock.acquire()
# Immediately cancel all jobs
await self.wait_for_jobs(skip_wait=True)
# Create new generator
self.generator = AsyncGenerator(
model=self.model,
cache=self.cache,
draft_model=self.draft_model,
draft_cache=self.draft_cache,
tokenizer=self.tokenizer,
max_batch_size=self.max_batch_size,
max_chunk_size=self.chunk_size,
)
# Update the state of the container var
if self.max_batch_size is None:
self.max_batch_size = self.generator.generator.max_batch_size
finally:
# This means the generator is being recreated
# The load lock is already released in the load function
if self.loaded:
self.load_lock.release()
async with self.load_condition:
self.load_condition.notify_all()
async def unload(self, loras_only: bool = False, **kwargs):
"""
Unloads the model and associated resources from memory.
Args:
loras_only: If True, only unload LoRAs.
**kwargs: Additional unloading options (e.g., shutdown).
"""
# Used when shutting down the server
do_shutdown = kwargs.get("shutdown")
try:
if not do_shutdown:
await self.load_lock.acquire()
# Wait for other jobs to finish
await self.wait_for_jobs(kwargs.get("skip_wait"))
self.model.unload()
self.model = None
self.config = None
self.cache = None
self.tokenizer = None
if self.use_draft_model:
self.draft_model.unload()
self.draft_model = None
self.draft_config = None
self.draft_cache = None
# Cleanup the generator from any pending jobs
if self.generator is not None:
await self.generator.close()
self.generator = None
gc.collect()
torch.cuda.empty_cache()
logger.info("Model unloaded.")
finally:
if not do_shutdown:
self.load_lock.release()
async with self.load_condition:
self.load_condition.notify_all()
def encode_tokens(self, text: str, **kwargs) -> List[int]:
"""
Encodes a string of text into a list of token IDs.
Args:
text: The input text string.
**kwargs: Backend-specific encoding options (e.g., add_bos_token).
Returns:
A list of integer token IDs.
"""
mm_embeddings: MultimodalEmbeddingWrapper = kwargs.get("embeddings")
mm_embeddings_content = mm_embeddings.content if mm_embeddings else []
return (
self.tokenizer.encode(
text,
add_bos=unwrap(
kwargs.get("add_bos_token"), self.hf_model.add_bos_token()
),
encode_special_tokens=unwrap(kwargs.get("encode_special_tokens"), True),
embeddings=mm_embeddings_content,
)
.flatten()
.tolist()
)
def decode_tokens(self, ids: List[int], **kwargs) -> str:
"""
Decodes a list of token IDs back into a string.
Args:
ids: A list of integer token IDs.
**kwargs: Backend-specific decoding options (e.g., decode_special_tokens).
Returns:
The decoded text string.
"""
ids = torch.tensor([ids])
return self.tokenizer.decode(
ids,
decode_special_tokens=unwrap(kwargs.get("decode_special_tokens"), True),
)[0]
def get_special_tokens(
self, add_bos_token: bool = True, ban_eos_token: bool = False
):
"""
Gets special tokens used by the model/tokenizer.
Args:
**kwargs: Options like add_bos_token, ban_eos_token.
Returns:
A dictionary mapping special token names (e.g., 'bos_token', 'eos_token')
to their string or ID representation.
"""
return {
"bos_token": self.tokenizer.bos_token if add_bos_token else "",
"eos_token": self.tokenizer.eos_token if not ban_eos_token else "",
"pad_token": self.tokenizer.pad_token,
"unk_token": self.tokenizer.unk_token,
}
async def generate(
self,
request_id: str,
prompt: str,
params: BaseSamplerRequest,
abort_event: Optional[asyncio.Event] = None,
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
) -> Dict[str, Any]:
"""
Generates a complete response for a given prompt and parameters.
Args:
request_id: Unique identifier for the generation request.
prompt: The input prompt string.
params: Sampling and generation parameters.
abort_event: An asyncio Event to signal cancellation.
mm_embeddings: Optional multimodal embeddings.
Returns:
A dictionary containing the generation info
"""
generations = []
async for generation in self.stream_generate(
request_id,
prompt,
params,
abort_event,
mm_embeddings,
):
generations.append(generation)
joined_generation = {
"text": "",
"prompt_tokens": 0,
"generation_tokens": 0,
"tool_calls": None,
"offset": [],
"token_probs": {},
"logprobs": [],
}
if generations:
# Get finish_reason first and then shift where -1 points to
if "finish_reason" in generations[-1]:
finish_chunk = generations.pop()
joined_generation = {**joined_generation, **finish_chunk}
else:
joined_generation["finish_reason"] = "stop"
if len(generations) > 0:
for generation in generations:
joined_generation["text"] += unwrap(generation.get("text"), "")
joined_generation["offset"].append(unwrap(generation.get("offset"), -1))
joined_generation["token_probs"].update(
unwrap(generation.get("token_probs"), {})
)
# Include empty logprob dicts for index preservation
joined_generation["logprobs"].append(
unwrap(generation.get("logprobs"), {})
)
joined_generation["prompt_tokens"] = unwrap(
generations[-1].get("prompt_tokens"), 0
)
joined_generation["generated_tokens"] = unwrap(
generations[-1].get("generated_tokens"), 0
)
return joined_generation
async def stream_generate(
self,
request_id: str,
prompt: str,
params: BaseSamplerRequest,
abort_event: Optional[asyncio.Event] = None,
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
) -> AsyncIterator[Dict[str, Any]]:
"""
Generates a response iteratively (streaming) for a given prompt.
Args:
request_id: Unique identifier for the generation request.
prompt: The input prompt string.
params: Sampling and generation parameters.
abort_event: An asyncio Event to signal cancellation.
mm_embeddings: Optional multimodal embeddings.
Yields:
Generation chunks
"""
try:
# Wait for load lock to be freed before processing
# Mainly used for loras and other operations where the class is available
async with self.load_condition:
await self.load_condition.wait_for(lambda: not self.load_lock.locked())
# If the model is being unloaded, don't accept new requests
if not self.loaded:
raise RuntimeError(
"Model is being unloaded. Cannot process new generation requests."
)
# Mark that the job is running
self.active_job_ids[request_id] = None
# Yield from the internal generator
async for generation_chunk in self.generate_gen(
request_id=request_id,
prompt=prompt,
params=params,
abort_event=abort_event,
mm_embeddings=mm_embeddings,
):
yield generation_chunk
finally:
# Clean up and remove the job from active IDs
del self.active_job_ids[request_id]
def handle_finish_chunk(self, result: dict, generation: dict):
eos_reason = result.get("eos_reason")
stop_str = None
if eos_reason == "max_new_tokens":
finish_reason = "length"
else:
finish_reason = "stop"
# Grab stop string if stop was the reason
if eos_reason == "stop_token":
stop_str = result.get("eos_triggering_token_str")
elif eos_reason == "stop_string":
stop_str = result.get("eos_triggering_string")
# Prompt
prompt_tokens = result.get("prompt_tokens")
cached_tokens = round(result.get("cached_tokens"), 2)
prompt_time = round(result.get("time_prefill"), 2)
prompt_ts = (
"Indeterminate"
if prompt_time == 0
else round((prompt_tokens - cached_tokens) / prompt_time, 2)
)
# Generated
gen_tokens = result.get("new_tokens")
gen_time = result.get("time_generate")
gen_ts = "Indeterminate" if gen_time == 0 else round(gen_tokens / gen_time, 2)
# Queue + Total
queue_time = result.get("time_enqueued")
total_time = round(queue_time + prompt_time + gen_time, 2)
finish_chunk = {
"prompt_tokens": prompt_tokens,
"prompt_time": round(prompt_time, 2),
"prompt_tokens_per_sec": prompt_ts,
"gen_tokens": gen_tokens,
"gen_time": round(gen_time, 2),
"gen_tokens_per_sec": gen_ts,
"total_time": total_time,
"queue_time": round(queue_time, 2),
"cached_tokens": cached_tokens,
"finish_reason": finish_reason,
"stop_str": stop_str,
}
return finish_chunk
async def generate_gen(
self,
request_id: str,
prompt: str,
params: BaseSamplerRequest,
abort_event: Optional[asyncio.Event] = None,
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
):
"""
Create generator function for prompt completion.
for kwargs, check common/sampling.py
"""
chunk_tokens: torch.Tensor | tuple[torch.Tensor, torch.Tensor]
sampler_builder = ExllamaV3SamplerBuilder()
# Penalties
# Set penalty range
penalty_range = unwrap(params.penalty_range, self.max_seq_len)
# Exl3's version of including the entire context
if penalty_range < 0:
penalty_range = int(10e7)
# Always make sure the fallback is 0 if range < 0
# It's technically fine to use -1, but this just validates the passed
# fallback
# Always default to 0 if something goes wrong
if params.penalty_range < 0:
fallback_decay = 0
else:
fallback_decay = params.penalty_range
repetition_decay = coalesce(params.repetition_decay, fallback_decay, 0)
# Apply penalties to builder
sampler_builder.penalties(
params.repetition_penalty,
params.frequency_penalty,
params.presence_penalty,
penalty_range,
repetition_decay,
)
# Apply temperature first to builder
if not params.temperature_last:
sampler_builder.temperature(params.temperature)
# Apply alphabet samplers to builder
sampler_builder.top_k(params.top_k)
sampler_builder.top_p(params.top_p)
sampler_builder.min_p(params.min_p)
# Apply temperature last to builder
if params.temperature_last:
sampler_builder.temperature(params.temperature)
# Build the sampler
# Set greedy if temperature is 0
sampler = sampler_builder.build(params.temperature == 0)
# Dynamically scale penalty range to output tokens
# Only do this if freq/pres pen is enabled
# and the repetition range is -1
# TODO: This currently does not work in exl3
# auto_scale_penalty_range = (
# gen_settings.token_frequency_penalty != 0
# or gen_settings.token_presence_penalty != 0
# ) and gen_settings.token_repetition_range == -1
prompts = [prompt]
stop_conditions = params.stop
add_bos_token = unwrap(params.add_bos_token, self.hf_model.add_bos_token())
# Get multimodal embeddings if present
mm_embeddings_content = mm_embeddings.content if mm_embeddings else []
# Fetch EOS tokens from generation_config if they exist
eos_tokens = self.hf_model.eos_tokens() or [self.tokenizer.eos_token_id]
stop_conditions += eos_tokens
input_ids = [
self.tokenizer.encode(
prompt,
add_bos=add_bos_token,
encode_special_tokens=True,
embeddings=mm_embeddings_content,
)
for prompt in prompts
]
# The first index will always be the positive prompt
context_len = input_ids[0].size(dim=-1)
# Automatically set max_tokens to fill up the context
# This should be an OK default, but may be changed in the future
max_tokens = unwrap(
params.max_tokens,
self.max_seq_len - context_len,
)
if max_tokens < 1:
logger.warning("max_tokens must be a positive integer, setting to 1.")
max_tokens = 1
# Determine if the negative context or the context length is bigger
context_to_check = context_len
# Check total length of prompt against max context length
if context_to_check > self.max_seq_len:
preamble = "Prompt"
raise ValueError(
f"{preamble} length {context_to_check} is greater than "
f"max_seq_len {self.max_seq_len}"
)
# Log prompt to console. Add the BOS token if specified
log_prompt(
f"{self.tokenizer.bos_token if add_bos_token else ''}{prompt}",
request_id,
)
generation = {}
job = AsyncJob(
self.generator,
sampler=sampler,
input_ids=input_ids,
max_new_tokens=max_tokens,
stop_conditions=stop_conditions,
banned_strings=params.banned_strings,
embeddings=mm_embeddings_content,
)
generated_tokens = 0
full_response = ""
metrics_result = {}
# Get the generation status once it's ready
try:
async for result in job:
# Abort if the event is set while streaming
if abort_event and abort_event.is_set():
await job.cancel()
break
chunk = unwrap(result.get("text"), "")
if chunk:
chunk_tokens = result.get("token_ids", self.tokenizer.encode(chunk))
full_response += chunk
if isinstance(chunk_tokens, torch.Tensor):
generated_tokens += chunk_tokens.size(dim=0)
# Increase penalty range to generated token amount
# TODO:
# if auto_scale_penalty_range:
# gen_settings.token_repetition_range = generated_tokens
generation = {
"text": chunk,
"prompt_tokens": context_len,
"generated_tokens": generated_tokens,
"offset": len(full_response),
}
yield generation
if result.get("eos"):
finish_chunk = self.handle_finish_chunk(result, generation)
# Save the final result for metrics logging
metrics_result = finish_chunk
yield finish_chunk
break
# Assign the active job to the request ID
self.active_job_ids[request_id] = job
except asyncio.CancelledError:
await job.cancel()
except Exception as ex:
# Create a new generator since the current state is broken
# No need to wait for this to finish
logger.error(
"FATAL ERROR with generation. "
"Attempting to recreate the generator. "
"If this fails, please restart the server.\n"
)
asyncio.ensure_future(self.create_generator())
await HealthManager.add_unhealthy_event(ex)
raise ex
finally:
# Log generation options to console
# Some options are too large, so log the args instead
log_generation_params(
request_id=request_id,
bos_token_id=self.tokenizer.bos_token_id,
eos_token_id=eos_tokens,
prompt=prompt,
**params.model_dump(exclude={"prompt"}),
# auto_scale_penalty_range=auto_scale_penalty_range, # TODO
)
# Log the metrics if present
if metrics_result:
log_metrics(
request_id,
metrics_result,
context_len,
self.max_seq_len,
)