Speculative decoding makes use of draft models that ingest the prompt before forwarding it to the main model. Add options in the config to support this. API options will occur in a different commit. Signed-off-by: kingbri <bdashore3@proton.me>
242 lines
8.3 KiB
Python
242 lines
8.3 KiB
Python
import uvicorn
|
|
import yaml
|
|
import pathlib
|
|
from auth import check_admin_key, check_api_key, load_auth_keys
|
|
from fastapi import FastAPI, Request, HTTPException, Depends
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from model import ModelContainer
|
|
from progress.bar import IncrementalBar
|
|
from sse_starlette import EventSourceResponse
|
|
from OAI.types.completion import CompletionRequest
|
|
from OAI.types.chat_completion import ChatCompletionRequest
|
|
from OAI.types.model import ModelCard, ModelLoadRequest, ModelLoadResponse
|
|
from OAI.types.token import (
|
|
TokenEncodeRequest,
|
|
TokenEncodeResponse,
|
|
TokenDecodeRequest,
|
|
TokenDecodeResponse
|
|
)
|
|
from OAI.utils import (
|
|
create_completion_response,
|
|
get_model_list,
|
|
get_chat_completion_prompt,
|
|
create_chat_completion_response,
|
|
create_chat_completion_stream_chunk
|
|
)
|
|
from typing import Optional
|
|
from utils import load_progress
|
|
from uuid import uuid4
|
|
|
|
app = FastAPI()
|
|
|
|
# Globally scoped variables. Undefined until initalized in main
|
|
model_container: Optional[ModelContainer] = None
|
|
config: dict = {}
|
|
|
|
def _check_model_container():
|
|
if model_container is None or model_container.model is None:
|
|
raise HTTPException(400, "No models are loaded.")
|
|
|
|
# ALlow CORS requests
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
# Model list endpoint
|
|
@app.get("/v1/models", dependencies=[Depends(check_api_key)])
|
|
@app.get("/v1/model/list", dependencies=[Depends(check_api_key)])
|
|
async def list_models():
|
|
model_config = config.get("model", {})
|
|
if "model_dir" in model_config:
|
|
model_path = pathlib.Path(model_config["model_dir"])
|
|
else:
|
|
model_path = pathlib.Path("models")
|
|
|
|
models = get_model_list(model_path.resolve())
|
|
|
|
return models
|
|
|
|
# Currently loaded model endpoint
|
|
@app.get("/v1/model", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
|
|
@app.get("/v1/internal/model/info", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
|
|
async def get_current_model():
|
|
model_card = ModelCard(id=model_container.get_model_path().name)
|
|
return model_card
|
|
|
|
# Load model endpoint
|
|
@app.post("/v1/model/load", dependencies=[Depends(check_admin_key)])
|
|
async def load_model(data: ModelLoadRequest):
|
|
if model_container and model_container.model:
|
|
raise HTTPException(400, "A model is already loaded! Please unload it first.")
|
|
|
|
def generator():
|
|
global model_container
|
|
|
|
model_config = config.get("model") or {}
|
|
if "model_dir" in model_config:
|
|
model_path = pathlib.Path(model_config["model_dir"])
|
|
else:
|
|
model_path = pathlib.Path("models")
|
|
|
|
model_path = model_path / data.name
|
|
|
|
model_container = ModelContainer(model_path.resolve(), False, **data.dict())
|
|
load_status = model_container.load_gen(load_progress)
|
|
for (module, modules) in load_status:
|
|
if module == 0:
|
|
loading_bar: IncrementalBar = IncrementalBar("Modules", max = modules)
|
|
elif module == modules:
|
|
loading_bar.next()
|
|
loading_bar.finish()
|
|
else:
|
|
loading_bar.next()
|
|
|
|
response = ModelLoadResponse(
|
|
module=module,
|
|
modules=modules,
|
|
status="processing"
|
|
)
|
|
|
|
yield response.json(ensure_ascii=False)
|
|
|
|
response = ModelLoadResponse(
|
|
module=module,
|
|
modules=modules,
|
|
status="finished"
|
|
)
|
|
|
|
yield response.json(ensure_ascii=False)
|
|
|
|
return EventSourceResponse(generator())
|
|
|
|
# Unload model endpoint
|
|
@app.get("/v1/model/unload", dependencies=[Depends(check_admin_key), Depends(_check_model_container)])
|
|
async def unload_model():
|
|
global model_container
|
|
|
|
model_container.unload()
|
|
model_container = None
|
|
|
|
# Encode tokens endpoint
|
|
@app.post("/v1/token/encode", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
|
|
async def encode_tokens(data: TokenEncodeRequest):
|
|
raw_tokens = model_container.get_tokens(data.text, None, **data.get_params())
|
|
|
|
# Have to use this if check otherwise Torch's tensors error out with a boolean issue
|
|
tokens = raw_tokens[0].tolist() if raw_tokens is not None else []
|
|
response = TokenEncodeResponse(tokens=tokens, length=len(tokens))
|
|
|
|
return response
|
|
|
|
# Decode tokens endpoint
|
|
@app.post("/v1/token/decode", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
|
|
async def decode_tokens(data: TokenDecodeRequest):
|
|
message = model_container.get_tokens(None, data.tokens, **data.get_params())
|
|
response = TokenDecodeResponse(text = message or "")
|
|
|
|
return response
|
|
|
|
# Completions endpoint
|
|
@app.post("/v1/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
|
|
async def generate_completion(request: Request, data: CompletionRequest):
|
|
model_path = model_container.get_model_path()
|
|
|
|
if isinstance(data.prompt, list):
|
|
data.prompt = "\n".join(data.prompt)
|
|
|
|
if data.stream:
|
|
async def generator():
|
|
new_generation = model_container.generate_gen(data.prompt, **data.to_gen_params())
|
|
for part in new_generation:
|
|
if await request.is_disconnected():
|
|
break
|
|
|
|
response = create_completion_response(part, model_path.name)
|
|
|
|
yield response.json(ensure_ascii=False)
|
|
|
|
return EventSourceResponse(generator())
|
|
else:
|
|
response_text = model_container.generate(data.prompt, **data.to_gen_params())
|
|
response = create_completion_response(response_text, model_path.name)
|
|
|
|
return response
|
|
|
|
# Chat completions endpoint
|
|
@app.post("/v1/chat/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
|
|
async def generate_chat_completion(request: Request, data: ChatCompletionRequest):
|
|
model_path = model_container.get_model_path()
|
|
|
|
if isinstance(data.messages, str):
|
|
prompt = data.messages
|
|
else:
|
|
prompt = get_chat_completion_prompt(model_path.name, data.messages)
|
|
|
|
if data.stream:
|
|
const_id = f"chatcmpl-{uuid4().hex}"
|
|
async def generator():
|
|
new_generation = model_container.generate_gen(prompt, **data.to_gen_params())
|
|
for part in new_generation:
|
|
if await request.is_disconnected():
|
|
break
|
|
|
|
response = create_chat_completion_stream_chunk(
|
|
const_id,
|
|
part,
|
|
model_path.name
|
|
)
|
|
|
|
yield response.json(ensure_ascii=False)
|
|
|
|
return EventSourceResponse(generator())
|
|
else:
|
|
response_text = model_container.generate(prompt, **data.to_gen_params())
|
|
response = create_chat_completion_response(response_text, model_path.name)
|
|
|
|
return response
|
|
|
|
if __name__ == "__main__":
|
|
# Initialize auth keys
|
|
load_auth_keys()
|
|
|
|
# Load from YAML config. Possibly add a config -> kwargs conversion function
|
|
try:
|
|
with open('config.yml', 'r') as config_file:
|
|
config = yaml.safe_load(config_file) or {}
|
|
except Exception as e:
|
|
print(
|
|
"The YAML config couldn't load because of the following error:",
|
|
f"\n\n{e}",
|
|
"\n\nTabbyAPI will start anyway and not parse this config file."
|
|
)
|
|
config = {}
|
|
|
|
# If an initial model name is specified, create a container and load the model
|
|
|
|
model_config = config.get("model") or {}
|
|
if "model_name" in model_config:
|
|
model_path = pathlib.Path(model_config.get("model_dir") or "models")
|
|
model_path = model_path / model_config.get("model_name")
|
|
|
|
model_container = ModelContainer(model_path.resolve(), False, **model_config)
|
|
load_status = model_container.load_gen(load_progress)
|
|
for (module, modules) in load_status:
|
|
if module == 0:
|
|
loading_bar: IncrementalBar = IncrementalBar("Modules", max = modules)
|
|
elif module == modules:
|
|
loading_bar.next()
|
|
loading_bar.finish()
|
|
else:
|
|
loading_bar.next()
|
|
|
|
network_config = config.get("network") or {}
|
|
uvicorn.run(
|
|
app,
|
|
host=network_config.get("host", "127.0.0.1"),
|
|
port=network_config.get("port", 5000),
|
|
log_level="debug"
|
|
)
|