Pydantic provides these helpers. Better to use these instead of the inspect lib. Signed-off-by: kingbri <bdashore3@proton.me>
337 lines
11 KiB
Python
337 lines
11 KiB
Python
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
|
from typing import List, Optional, Union
|
|
|
|
from common.utils import unwrap
|
|
|
|
|
|
class ConfigOverrideConfig(BaseModel):
|
|
config: Optional[str] = Field(
|
|
None, description=("Path to an overriding config.yml file")
|
|
)
|
|
|
|
|
|
class NetworkConfig(BaseModel):
|
|
host: Optional[str] = Field("127.0.0.1", description=("The IP to host on"))
|
|
port: Optional[int] = Field(5000, description=("The port to host on"))
|
|
disable_auth: Optional[bool] = Field(
|
|
False, description=("Disable HTTP token authentication with requests")
|
|
)
|
|
send_tracebacks: Optional[bool] = Field(
|
|
False,
|
|
description=("Decide whether to send error tracebacks over the API"),
|
|
)
|
|
api_servers: Optional[List[str]] = Field(
|
|
[
|
|
"OAI",
|
|
],
|
|
description=("API servers to enable. Options: (OAI, Kobold)"),
|
|
)
|
|
|
|
|
|
class LoggingConfig(BaseModel):
|
|
log_prompt: Optional[bool] = Field(False, description=("Enable prompt logging"))
|
|
log_generation_params: Optional[bool] = Field(
|
|
False, description=("Enable generation parameter logging")
|
|
)
|
|
log_requests: Optional[bool] = Field(False, description=("Enable request logging"))
|
|
|
|
|
|
class ModelConfig(BaseModel):
|
|
model_dir: str = Field(
|
|
"models",
|
|
description=(
|
|
"Overrides the directory to look for models (default: models). Windows"
|
|
"users, do NOT put this path in quotes."
|
|
),
|
|
)
|
|
use_dummy_models: Optional[bool] = Field(
|
|
False,
|
|
description=(
|
|
"Sends dummy model names when the models endpoint is queried. Enable this"
|
|
"if looking for specific OAI models."
|
|
),
|
|
)
|
|
model_name: Optional[str] = Field(
|
|
None,
|
|
description=(
|
|
"An initial model to load. Make sure the model is located in the model"
|
|
"directory! REQUIRED: This must be filled out to load a model on startup."
|
|
),
|
|
)
|
|
use_as_default: List[str] = Field(
|
|
default_factory=list,
|
|
description=(
|
|
"Names of args to use as a default fallback for API load requests"
|
|
"(default: []). Example: ['max_seq_len', 'cache_mode']"
|
|
),
|
|
)
|
|
max_seq_len: Optional[int] = Field(
|
|
None,
|
|
description=(
|
|
"Max sequence length. Fetched from the model's base sequence length in"
|
|
"config.json by default."
|
|
),
|
|
)
|
|
override_base_seq_len: Optional[int] = Field(
|
|
None,
|
|
description=(
|
|
"Overrides base model context length. WARNING: Only use this if the"
|
|
"model's base sequence length is incorrect."
|
|
),
|
|
)
|
|
tensor_parallel: Optional[bool] = Field(
|
|
False,
|
|
description=(
|
|
"Load model with tensor parallelism. Fallback to autosplit if GPU split"
|
|
"isn't provided."
|
|
),
|
|
)
|
|
gpu_split_auto: Optional[bool] = Field(
|
|
True,
|
|
description=(
|
|
"Automatically allocate resources to GPUs (default: True). Not parsed for"
|
|
"single GPU users."
|
|
),
|
|
)
|
|
autosplit_reserve: List[int] = Field(
|
|
[96],
|
|
description=(
|
|
"Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0)."
|
|
"Represented as an array of MB per GPU."
|
|
),
|
|
)
|
|
gpu_split: List[float] = Field(
|
|
default_factory=list,
|
|
description=(
|
|
"An integer array of GBs of VRAM to split between GPUs (default: [])."
|
|
"Used with tensor parallelism."
|
|
),
|
|
)
|
|
rope_scale: Optional[float] = Field(
|
|
1.0,
|
|
description=(
|
|
"Rope scale (default: 1.0). Same as compress_pos_emb. Only use if the"
|
|
"model was trained on long context with rope."
|
|
),
|
|
)
|
|
rope_alpha: Optional[Union[float, str]] = Field(
|
|
1.0,
|
|
description=(
|
|
"Rope alpha (default: 1.0). Same as alpha_value. Set to 'auto' to auto-"
|
|
"calculate."
|
|
),
|
|
)
|
|
cache_mode: Optional[str] = Field(
|
|
"FP16",
|
|
description=(
|
|
"Enable different cache modes for VRAM savings (default: FP16). Possible"
|
|
"values: FP16, Q8, Q6, Q4."
|
|
),
|
|
)
|
|
cache_size: Optional[int] = Field(
|
|
None,
|
|
description=(
|
|
"Size of the prompt cache to allocate (default: max_seq_len). Must be a"
|
|
"multiple of 256."
|
|
),
|
|
)
|
|
chunk_size: Optional[int] = Field(
|
|
2048,
|
|
description=(
|
|
"Chunk size for prompt ingestion (default: 2048). A lower value reduces"
|
|
"VRAM usage but decreases ingestion speed."
|
|
),
|
|
)
|
|
max_batch_size: Optional[int] = Field(
|
|
None,
|
|
description=(
|
|
"Set the maximum number of prompts to process at one time (default:"
|
|
"None/Automatic). Automatically calculated if left blank."
|
|
),
|
|
)
|
|
prompt_template: Optional[str] = Field(
|
|
None,
|
|
description=(
|
|
"Set the prompt template for this model. If empty, attempts to look for"
|
|
"the model's chat template."
|
|
),
|
|
)
|
|
num_experts_per_token: Optional[int] = Field(
|
|
None,
|
|
description=(
|
|
"Number of experts to use per token. Fetched from the model's"
|
|
"config.json. For MoE models only."
|
|
),
|
|
)
|
|
fasttensors: Optional[bool] = Field(
|
|
False,
|
|
description=(
|
|
"Enables fasttensors to possibly increase model loading speeds (default:"
|
|
"False)."
|
|
),
|
|
)
|
|
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
|
|
class DraftModelConfig(BaseModel):
|
|
draft_model_dir: Optional[str] = Field(
|
|
"models",
|
|
description=(
|
|
"Overrides the directory to look for draft models (default: models)"
|
|
),
|
|
)
|
|
draft_model_name: Optional[str] = Field(
|
|
None,
|
|
description=(
|
|
"An initial draft model to load. Ensure the model is in the model"
|
|
"directory."
|
|
),
|
|
)
|
|
draft_rope_scale: Optional[float] = Field(
|
|
1.0,
|
|
description=(
|
|
"Rope scale for draft models (default: 1.0). Same as compress_pos_emb."
|
|
"Use if the draft model was trained on long context with rope."
|
|
),
|
|
)
|
|
draft_rope_alpha: Optional[float] = Field(
|
|
None,
|
|
description=(
|
|
"Rope alpha for draft models (default: None). Same as alpha_value. Leave"
|
|
"blank to auto-calculate the alpha value."
|
|
),
|
|
)
|
|
draft_cache_mode: Optional[str] = Field(
|
|
"FP16",
|
|
description=(
|
|
"Cache mode for draft models to save VRAM (default: FP16). Possible"
|
|
"values: FP16, Q8, Q6, Q4."
|
|
),
|
|
)
|
|
|
|
|
|
class LoraInstanceModel(BaseModel):
|
|
name: str = Field(..., description=("Name of the LoRA model"))
|
|
scaling: float = Field(
|
|
1.0, description=("Scaling factor for the LoRA model (default: 1.0)")
|
|
)
|
|
|
|
|
|
class LoraConfig(BaseModel):
|
|
lora_dir: Optional[str] = Field(
|
|
"loras", description=("Directory to look for LoRAs (default: 'loras')")
|
|
)
|
|
loras: Optional[List[LoraInstanceModel]] = Field(
|
|
None,
|
|
description=(
|
|
"List of LoRAs to load and associated scaling factors (default scaling:"
|
|
"1.0)"
|
|
),
|
|
)
|
|
|
|
|
|
class SamplingConfig(BaseModel):
|
|
override_preset: Optional[str] = Field(
|
|
None, description=("Select a sampler override preset")
|
|
)
|
|
|
|
|
|
class DeveloperConfig(BaseModel):
|
|
unsafe_launch: Optional[bool] = Field(
|
|
False, description=("Skip Exllamav2 version check")
|
|
)
|
|
disable_request_streaming: Optional[bool] = Field(
|
|
False, description=("Disables API request streaming")
|
|
)
|
|
cuda_malloc_backend: Optional[bool] = Field(
|
|
False, description=("Runs with the pytorch CUDA malloc backend")
|
|
)
|
|
uvloop: Optional[bool] = Field(
|
|
False, description=("Run asyncio using Uvloop or Winloop")
|
|
)
|
|
realtime_process_priority: Optional[bool] = Field(
|
|
False,
|
|
description=(
|
|
"Set process to use a higher priority For realtime process priority, run"
|
|
"as administrator or sudo Otherwise, the priority will be set to high"
|
|
),
|
|
)
|
|
|
|
|
|
class EmbeddingsConfig(BaseModel):
|
|
embedding_model_dir: Optional[str] = Field(
|
|
"models",
|
|
description=(
|
|
"Overrides directory to look for embedding models (default: models)"
|
|
),
|
|
)
|
|
embeddings_device: Optional[str] = Field(
|
|
"cpu",
|
|
description=(
|
|
"Device to load embedding models on (default: cpu). Possible values: cpu,"
|
|
"auto, cuda. If using an AMD GPU, set this value to 'cuda'."
|
|
),
|
|
)
|
|
embedding_model_name: Optional[str] = Field(
|
|
None, description=("The embeddings model to load")
|
|
)
|
|
|
|
|
|
class TabbyConfigModel(BaseModel):
|
|
config: ConfigOverrideConfig = Field(
|
|
default_factory=ConfigOverrideConfig.model_construct
|
|
)
|
|
network: NetworkConfig = Field(default_factory=NetworkConfig.model_construct)
|
|
logging: LoggingConfig = Field(default_factory=LoggingConfig.model_construct)
|
|
model: ModelConfig = Field(default_factory=ModelConfig.model_construct)
|
|
draft_model: DraftModelConfig = Field(
|
|
default_factory=DraftModelConfig.model_construct
|
|
)
|
|
lora: LoraConfig = Field(default_factory=LoraConfig.model_construct)
|
|
sampling: SamplingConfig = Field(default_factory=SamplingConfig.model_construct)
|
|
developer: DeveloperConfig = Field(default_factory=DeveloperConfig.model_construct)
|
|
embeddings: EmbeddingsConfig = Field(
|
|
default_factory=EmbeddingsConfig.model_construct
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
def set_defaults(cls, values):
|
|
for field_name, field_value in values.items():
|
|
if field_value is None:
|
|
default_instance = cls.__annotations__[field_name]().dict()
|
|
values[field_name] = cls.__annotations__[field_name](**default_instance)
|
|
return values
|
|
|
|
model_config = ConfigDict(validate_assignment=True, protected_namespaces=())
|
|
|
|
|
|
def generate_config_file(filename="config_sample.yml", indentation=2):
|
|
schema = TabbyConfigModel.model_json_schema()
|
|
|
|
def dump_def(id: str, indent=2):
|
|
yaml = ""
|
|
indent = " " * indentation * indent
|
|
id = id.split("/")[-1]
|
|
|
|
section = schema["$defs"][id]["properties"]
|
|
for property in section.keys(): # get type
|
|
comment = section[property]["description"]
|
|
yaml += f"{indent}# {comment}\n"
|
|
|
|
value = unwrap(section[property].get("default"), "")
|
|
yaml += f"{indent}{property}: {value}\n\n"
|
|
|
|
return yaml + "\n"
|
|
|
|
yaml = ""
|
|
for section in schema["properties"].keys():
|
|
yaml += f"{section}:\n"
|
|
yaml += dump_def(schema["properties"][section]["$ref"])
|
|
yaml += "\n"
|
|
|
|
with open(filename, "w") as f:
|
|
f.write(yaml)
|
|
|
|
|
|
# generate_config_file("test.yml")
|