tabbyAPI-ollama/common/transformers_utils.py
kingbri 390daeb92f Model: Create universal HFModel class
The HFModel class serves to coalesce all config files that contain
random keys which are required for model usage.

Adding this base class allows us to expand as HuggingFace randomly
changes their JSON schemas over time, reducing the brunt that backend
devs need to feel when their next model isn't supported.

Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
2025-05-13 18:12:38 -04:00

177 lines
5.2 KiB
Python

import aiofiles
import json
import pathlib
from loguru import logger
from pydantic import BaseModel
from typing import Dict, List, Optional, Set, Union
class GenerationConfig(BaseModel):
"""
An abridged version of HuggingFace's GenerationConfig.
Will be expanded as needed.
"""
eos_token_id: Optional[Union[int, List[int]]] = None
@classmethod
async def from_directory(cls, model_directory: pathlib.Path):
"""Create an instance from a generation config file."""
generation_config_path = model_directory / "generation_config.json"
async with aiofiles.open(
generation_config_path, "r", encoding="utf8"
) as generation_config_json:
contents = await generation_config_json.read()
generation_config_dict = json.loads(contents)
return cls.model_validate(generation_config_dict)
def eos_tokens(self):
"""Wrapper method to fetch EOS tokens."""
if isinstance(self.eos_token_id, list):
return self.eos_token_id
elif isinstance(self.eos_token_id, int):
return [self.eos_token_id]
else:
return []
class HuggingFaceConfig(BaseModel):
"""
DEPRECATED: Currently a stub and doesn't do anything.
An abridged version of HuggingFace's model config.
Will be expanded as needed.
"""
eos_token_id: Optional[Union[int, List[int]]] = None
quantization_config: Optional[Dict] = None
@classmethod
async def from_directory(cls, model_directory: pathlib.Path):
"""Create an instance from a generation config file."""
hf_config_path = model_directory / "config.json"
async with aiofiles.open(
hf_config_path, "r", encoding="utf8"
) as hf_config_json:
contents = await hf_config_json.read()
hf_config_dict = json.loads(contents)
return cls.model_validate(hf_config_dict)
def quant_method(self):
"""Wrapper method to fetch quant type"""
if isinstance(self.quantization_config, Dict):
return self.quantization_config.get("quant_method")
else:
return None
def eos_tokens(self):
"""Wrapper method to fetch EOS tokens."""
if isinstance(self.eos_token_id, list):
return self.eos_token_id
elif isinstance(self.eos_token_id, int):
return [self.eos_token_id]
else:
return []
class TokenizerConfig(BaseModel):
"""
An abridged version of HuggingFace's tokenizer config.
"""
add_bos_token: Optional[bool] = True
@classmethod
async def from_directory(cls, model_directory: pathlib.Path):
"""Create an instance from a tokenizer config file."""
tokenizer_config_path = model_directory / "tokenizer_config.json"
async with aiofiles.open(
tokenizer_config_path, "r", encoding="utf8"
) as tokenizer_config_json:
contents = await tokenizer_config_json.read()
tokenizer_config_dict = json.loads(contents)
return cls.model_validate(tokenizer_config_dict)
class HFModel:
"""
Unified container for HuggingFace model configuration files.
These are abridged for hyper-specific model parameters not covered
by most backends.
Includes:
- config.json
- generation_config.json
- tokenizer_config.json
"""
hf_config: HuggingFaceConfig
tokenizer_config: Optional[TokenizerConfig] = None
generation_config: Optional[GenerationConfig] = None
@classmethod
async def from_directory(cls, model_directory: pathlib.Path):
"""Create an instance from a model directory"""
self = cls()
# A model must have an HF config
try:
self.hf_config = await HuggingFaceConfig.from_directory(model_directory)
except Exception as exc:
raise ValueError(
f"Failed to load config.json from {model_directory}"
) from exc
try:
self.generation_config = await GenerationConfig.from_directory(
model_directory
)
except Exception:
logger.warning(
"Generation config file not found in model directory, skipping."
)
try:
self.tokenizer_config = await TokenizerConfig.from_directory(
model_directory
)
except Exception:
logger.warning(
"Tokenizer config file not found in model directory, skipping."
)
return self
def quant_method(self):
"""Wrapper for quantization method"""
return self.hf_config.quant_method()
def eos_tokens(self):
"""Combines and returns EOS tokens from various configs"""
eos_ids: Set[int] = set()
eos_ids.update(self.hf_config.eos_tokens())
if self.generation_config:
eos_ids.update(self.generation_config.eos_tokens())
# Convert back to a list
return list(eos_ids)
def add_bos_token(self):
"""Wrapper for tokenizer config"""
if self.tokenizer_config:
return self.tokenizer_config.add_bos_token
# Expected default
return True