Non-streaming tasks were not regulated by the semaphore, causing these tasks to interfere with streaming generations. Add helper functions to take in both sync and async functions for callbacks and sequential blocking with the semaphore. Signed-off-by: kingbri <bdashore3@proton.me>
550 lines
24 KiB
Python
550 lines
24 KiB
Python
import gc
|
|
import pathlib
|
|
import time
|
|
import torch
|
|
from exllamav2 import(
|
|
ExLlamaV2,
|
|
ExLlamaV2Config,
|
|
ExLlamaV2Cache,
|
|
ExLlamaV2Cache_8bit,
|
|
ExLlamaV2Tokenizer,
|
|
ExLlamaV2Lora
|
|
)
|
|
from exllamav2.generator import(
|
|
ExLlamaV2StreamingGenerator,
|
|
ExLlamaV2Sampler
|
|
)
|
|
|
|
from gen_logging import log_generation_params, log_prompt, log_response
|
|
from typing import List, Optional, Union
|
|
from templating import PromptTemplate, find_template_from_model, get_template_from_config, get_template_from_file
|
|
from utils import coalesce, unwrap
|
|
|
|
# Bytes to reserve on first device when loading with auto split
|
|
auto_split_reserve_bytes = 96 * 1024**2
|
|
|
|
class ModelContainer:
|
|
config: Optional[ExLlamaV2Config] = None
|
|
draft_config: Optional[ExLlamaV2Config] = None
|
|
model: Optional[ExLlamaV2] = None
|
|
draft_model: Optional[ExLlamaV2] = None
|
|
cache: Optional[ExLlamaV2Cache] = None
|
|
draft_cache: Optional[ExLlamaV2Cache] = None
|
|
tokenizer: Optional[ExLlamaV2Tokenizer] = None
|
|
generator: Optional[ExLlamaV2StreamingGenerator] = None
|
|
prompt_template: Optional[PromptTemplate] = None
|
|
|
|
cache_fp8: bool = False
|
|
gpu_split_auto: bool = True
|
|
gpu_split: Optional[list] = None
|
|
|
|
active_loras: List[ExLlamaV2Lora] = []
|
|
|
|
def __init__(self, model_directory: pathlib.Path, quiet = False, **kwargs):
|
|
"""
|
|
Create model container
|
|
|
|
Args:
|
|
model_dir (int): Model directory containing config.json, tokenizer.model etc.
|
|
quiet (bool): Suppress console output
|
|
load_progress_callback (function, optional): A function to call for each module loaded. Prototype:
|
|
def progress(loaded_modules: int, total_modules: int, loading_draft: bool)
|
|
**kwargs:
|
|
`cache_mode` (str): Sets cache mode, "FP16" or "FP8" (defaulf: "FP16")
|
|
'max_seq_len' (int): Override model's default max sequence length (default: 4096)
|
|
'rope_scale' (float): Set RoPE scaling factor for model (default: 1.0)
|
|
'rope_alpha' (float): Set RoPE alpha (NTK) factor for model (default: 1.0)
|
|
'prompt_template' (str): Manually sets the prompt template for this model (default: None)
|
|
'chunk_size' (int): Sets the maximum chunk size for the model (default: 2048)
|
|
Inferencing in chunks reduces overall VRAM overhead by processing very long sequences in smaller
|
|
batches. This limits the size of temporary buffers needed for the hidden state and attention
|
|
weights.
|
|
'draft_model_dir' (str): Draft model directory
|
|
'draft_rope_scale' (float): Set RoPE scaling factor for draft model (default: 1.0)
|
|
'draft_rope_alpha' (float): RoPE alpha (NTK) factor for draft model.
|
|
By default, the draft model's alpha value is calculated automatically to scale to the size of the
|
|
full model.
|
|
'lora_dir' (str): Lora directory
|
|
'loras' (list[dict]): List of loras to be loaded, consisting of 'name' and 'scaling'
|
|
'gpu_split_auto' (bool): Automatically split model across available devices (default: True)
|
|
'gpu_split' (list[float]): Allocation for weights and (some) tensors, per device
|
|
'no_flash_attn' (bool): Turns off flash attention (increases vram usage) (default: False)
|
|
"""
|
|
|
|
self.quiet = quiet
|
|
|
|
self.cache_fp8 = "cache_mode" in kwargs and kwargs["cache_mode"] == "FP8"
|
|
self.gpu_split = kwargs.get("gpu_split")
|
|
self.gpu_split_auto = unwrap(kwargs.get("gpu_split_auto"), True)
|
|
|
|
self.config = ExLlamaV2Config()
|
|
self.config.model_dir = str(model_directory.resolve())
|
|
|
|
# Make the max seq len 4096 before preparing the config
|
|
# This is a better default than 2038
|
|
self.config.max_seq_len = 4096
|
|
self.config.prepare()
|
|
|
|
# Then override the base_seq_len if present
|
|
override_base_seq_len = kwargs.get("override_base_seq_len")
|
|
if override_base_seq_len:
|
|
self.config.max_seq_len = override_base_seq_len
|
|
|
|
# Grab the base model's sequence length before overrides for rope calculations
|
|
base_seq_len = self.config.max_seq_len
|
|
|
|
# Set the target seq len if present
|
|
target_max_seq_len = kwargs.get("max_seq_len")
|
|
if target_max_seq_len:
|
|
self.config.max_seq_len = target_max_seq_len
|
|
|
|
# Set the rope scale
|
|
self.config.scale_pos_emb = unwrap(kwargs.get("rope_scale"), 1.0)
|
|
|
|
# Automatically calculate rope alpha
|
|
self.config.scale_alpha_value = unwrap(
|
|
kwargs.get("rope_alpha"),
|
|
self.calculate_rope_alpha(base_seq_len)
|
|
)
|
|
|
|
# Turn off flash attention?
|
|
self.config.no_flash_attn = unwrap(kwargs.get("no_flash_attention"), False)
|
|
|
|
# low_mem is currently broken in exllamav2. Don't use it until it's fixed.
|
|
"""
|
|
if "low_mem" in kwargs and kwargs["low_mem"]:
|
|
self.config.set_low_mem()
|
|
"""
|
|
|
|
# Set prompt template override if provided
|
|
prompt_template_name = kwargs.get("prompt_template")
|
|
try:
|
|
if prompt_template_name:
|
|
# Read the template
|
|
self.prompt_template = get_template_from_file(prompt_template_name)
|
|
else:
|
|
# Try finding the chat template from the model's config.json
|
|
self.prompt_template = get_template_from_config(
|
|
pathlib.Path(self.config.model_config)
|
|
)
|
|
|
|
# If that fails, attempt fetching from model name
|
|
if self.prompt_template is None:
|
|
template_match = find_template_from_model(model_directory)
|
|
if template_match:
|
|
self.prompt_template = get_template_from_file(template_match)
|
|
except OSError:
|
|
# The template or config.json couldn't be found in the user's filesystem
|
|
print(f"Could not find template file with name {prompt_template_name}.jinja")
|
|
self.prompt_template = None
|
|
|
|
# Catch all for template lookup errors
|
|
if self.prompt_template:
|
|
print(f"Using template {self.prompt_template.name} for chat completions.")
|
|
else:
|
|
print("Chat completions are disabled because a prompt template wasn't provided or auto-detected.")
|
|
|
|
# Set num of experts per token if provided
|
|
num_experts_override = kwargs.get("num_experts_per_token")
|
|
if num_experts_override:
|
|
if hasattr(self.config, "num_experts_per_token"):
|
|
self.config.num_experts_per_token = num_experts_override
|
|
else:
|
|
print(" !! Warning: Currently installed ExLlamaV2 does not support overriding MoE experts")
|
|
|
|
chunk_size = min(unwrap(kwargs.get("chunk_size"), 2048), self.config.max_seq_len)
|
|
self.config.max_input_len = chunk_size
|
|
self.config.max_attn_size = chunk_size ** 2
|
|
|
|
draft_args = unwrap(kwargs.get("draft"), {})
|
|
draft_model_name = draft_args.get("draft_model_name")
|
|
enable_draft = draft_args and draft_model_name
|
|
|
|
# Always disable draft if params are incorrectly configured
|
|
if draft_args and draft_model_name is None:
|
|
print("A draft config was found but a model name was not given. Please check your config.yml! Skipping draft load.")
|
|
enable_draft = False
|
|
|
|
if enable_draft:
|
|
self.draft_config = ExLlamaV2Config()
|
|
draft_model_path = pathlib.Path(unwrap(draft_args.get("draft_model_dir"), "models"))
|
|
draft_model_path = draft_model_path / draft_model_name
|
|
|
|
self.draft_config.model_dir = str(draft_model_path.resolve())
|
|
self.draft_config.prepare()
|
|
|
|
self.draft_config.scale_pos_emb = unwrap(draft_args.get("draft_rope_scale"), 1.0)
|
|
|
|
# Automatically calculate draft rope alpha
|
|
self.draft_config.scale_alpha_value = unwrap(
|
|
draft_args.get("draft_rope_alpha"),
|
|
self.calculate_rope_alpha(self.draft_config.max_seq_len)
|
|
)
|
|
self.draft_config.max_seq_len = self.config.max_seq_len
|
|
|
|
if "chunk_size" in kwargs:
|
|
self.draft_config.max_input_len = kwargs["chunk_size"]
|
|
self.draft_config.max_attn_size = kwargs["chunk_size"] ** 2
|
|
|
|
def calculate_rope_alpha(self, base_seq_len):
|
|
ratio = self.config.max_seq_len / base_seq_len
|
|
|
|
# Default to a 1 alpha if the sequence length is ever less than or equal to 1
|
|
alpha = 1 if ratio <= 1.0 else -0.13436 + 0.80541 * ratio + 0.28833 * ratio ** 2
|
|
return alpha
|
|
|
|
def get_model_path(self, is_draft: bool = False):
|
|
model_path = pathlib.Path(self.draft_config.model_dir if is_draft else self.config.model_dir)
|
|
return model_path
|
|
|
|
def load(self, progress_callback = None):
|
|
"""
|
|
Load model
|
|
|
|
Args:
|
|
progress_callback (function, optional): A function to call for each module loaded. Prototype:
|
|
def progress(loaded_modules: int, total_modules: int)
|
|
"""
|
|
for _ in self.load_gen(progress_callback):
|
|
pass
|
|
|
|
def load_loras(self, lora_directory: pathlib.Path, **kwargs):
|
|
"""
|
|
Load loras
|
|
"""
|
|
|
|
loras = unwrap(kwargs.get("loras"), [])
|
|
success: List[str] = []
|
|
failure: List[str] = []
|
|
|
|
for lora in loras:
|
|
lora_name = lora.get("name")
|
|
lora_scaling = unwrap(lora.get("scaling"), 1.0)
|
|
|
|
if lora_name is None:
|
|
print("One of your loras does not have a name. Please check your config.yml! Skipping lora load.")
|
|
failure.append(lora_name)
|
|
continue
|
|
|
|
print(f"Loading lora: {lora_name} at scaling {lora_scaling}")
|
|
lora_path = lora_directory / lora_name
|
|
self.active_loras.append(ExLlamaV2Lora.from_directory(self.model, lora_path, lora_scaling))
|
|
print("Lora successfully loaded.")
|
|
success.append(lora_name)
|
|
|
|
# Return success and failure names
|
|
return { 'success': success, 'failure': failure }
|
|
|
|
def load_gen(self, progress_callback = None):
|
|
"""
|
|
Load model, generator function
|
|
|
|
Args:
|
|
progress_callback (function, optional): A function to call for each module loaded. Prototype:
|
|
def progress(loaded_modules: int, total_modules: int)
|
|
"""
|
|
|
|
# Load tokenizer
|
|
self.tokenizer = ExLlamaV2Tokenizer(self.config)
|
|
|
|
# Load draft model if a config is present
|
|
if self.draft_config:
|
|
self.draft_model = ExLlamaV2(self.draft_config)
|
|
if not self.quiet:
|
|
print("Loading draft model: " + self.draft_config.model_dir)
|
|
|
|
self.draft_cache = ExLlamaV2Cache(self.draft_model, lazy = True)
|
|
reserve = [auto_split_reserve_bytes] + [0] * 16
|
|
yield from self.draft_model.load_autosplit_gen(self.draft_cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
|
|
|
|
# Test VRAM allocation with a full-length forward pass
|
|
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
|
|
self.draft_model.forward(input_ids, cache = self.cache, preprocess_only = True)
|
|
|
|
# Load model
|
|
self.model = ExLlamaV2(self.config)
|
|
if not self.quiet:
|
|
print("Loading model: " + self.config.model_dir)
|
|
|
|
if not self.gpu_split_auto:
|
|
for value in self.model.load_gen(self.gpu_split, callback_gen = progress_callback):
|
|
if isinstance(value, str):
|
|
yield value
|
|
|
|
if self.cache_fp8:
|
|
self.cache = ExLlamaV2Cache_8bit(self.model, lazy = self.gpu_split_auto)
|
|
else:
|
|
self.cache = ExLlamaV2Cache(self.model, lazy = self.gpu_split_auto)
|
|
|
|
if self.gpu_split_auto:
|
|
reserve = [auto_split_reserve_bytes] + [0] * 16
|
|
yield from self.model.load_autosplit_gen(self.cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
|
|
|
|
# Test VRAM allocation with a full-length forward pass
|
|
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
|
|
self.model.forward(input_ids, cache = self.cache, preprocess_only = True)
|
|
|
|
# Create generator
|
|
self.generator = ExLlamaV2StreamingGenerator(self.model, self.cache, self.tokenizer, self.draft_model, self.draft_cache)
|
|
|
|
print("Model successfully loaded.")
|
|
|
|
|
|
def unload(self, loras_only: bool = False):
|
|
"""
|
|
Free all VRAM resources used by this model
|
|
"""
|
|
|
|
for lora in self.active_loras:
|
|
lora.unload()
|
|
|
|
self.active_loras = []
|
|
|
|
# Unload the entire model if not just unloading loras
|
|
if not loras_only:
|
|
if self.model:
|
|
self.model.unload()
|
|
self.model = None
|
|
|
|
if self.draft_model:
|
|
self.draft_model.unload()
|
|
self.draft_model = None
|
|
|
|
self.config = None
|
|
self.cache = None
|
|
self.tokenizer = None
|
|
self.generator = None
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
# Common function for token operations
|
|
def get_tokens(self, text: Optional[str], ids: Optional[List[int]], **kwargs):
|
|
if text:
|
|
# Assume token encoding
|
|
return self.tokenizer.encode(
|
|
text,
|
|
add_bos = unwrap(kwargs.get("add_bos_token"), True),
|
|
encode_special_tokens = unwrap(kwargs.get("encode_special_tokens"), True)
|
|
)
|
|
if ids:
|
|
# Assume token decoding
|
|
ids = torch.tensor([ids])
|
|
return self.tokenizer.decode(ids, decode_special_tokens = unwrap(kwargs.get("decode_special_tokens"), True))[0]
|
|
|
|
def generate(self, prompt: str, **kwargs):
|
|
generation = list(self.generate_gen(prompt, **kwargs))
|
|
if generation:
|
|
response = "".join(map(lambda chunk: chunk[0], generation))
|
|
return response, generation[-1][1], generation[-1][2]
|
|
else:
|
|
return "", 0, 0
|
|
|
|
def generate_gen(self, prompt: str, **kwargs):
|
|
"""
|
|
Create generator function for prompt completion
|
|
|
|
Args:
|
|
prompt (str): Input prompt
|
|
**kwargs:
|
|
'token_healing' (bool): Use token healing (default: False)
|
|
'temperature' (float): Sampling temperature (default: 1.0)
|
|
'temperature_last' (bool): Apply temperature after all other samplers (default: False)
|
|
'top_k' (int): Sampling top-K (default: 0)
|
|
'top_p' (float): Sampling top-P (default: 1.0)
|
|
'min_p' (float): Sampling min-P (default: 0.0)
|
|
'tfs' (float): Tail-free sampling (default: 0.0)
|
|
'typical' (float): Sampling typical (default: 0.0)
|
|
'mirostat' (bool): Use Mirostat (default: False)
|
|
'mirostat_tau' (float) Mirostat tau parameter (default: 1.5)
|
|
'mirostat_eta' (float) Mirostat eta parameter (default: 0.1)
|
|
'repetition_penalty' (float): Token repetition/presence penalty (default: 1.15)
|
|
'repetition_range' (int): Repetition penalty range (default: whole context)
|
|
'repetition_decay' (int): Repetition penalty range (default: same as range)
|
|
'stop' (List[Union[str, int]]): List of stop strings/tokens to end response (default: [EOS])
|
|
'max_tokens' (int): Max no. tokens in response (default: 150)
|
|
'add_bos_token' (bool): Adds the BOS token to the start of the prompt (default: True)
|
|
'ban_eos_token' (bool): Bans the EOS token from generation (default: False)
|
|
'logit_bias' (Dict[int, float]): Biases specific tokens to either show up more or less (default: None)
|
|
'stream_interval' (float): Interval in seconds between each output chunk (default: immediate)
|
|
'generate_window' (int): Space to reserve at the end of the model's context when generating.
|
|
Rolls context window by the same amount if context length is exceeded to allow generating past
|
|
the models max_seq_len.
|
|
|
|
"""
|
|
|
|
token_healing = unwrap(kwargs.get("token_healing"), False)
|
|
max_tokens = unwrap(kwargs.get("max_tokens"), 150)
|
|
stream_interval = unwrap(kwargs.get("stream_interval"), 0)
|
|
generate_window = min(unwrap(kwargs.get("generate_window"), 512), max_tokens)
|
|
|
|
# Sampler settings
|
|
gen_settings = ExLlamaV2Sampler.Settings()
|
|
|
|
# Warn of unsupported settings if the setting is enabled
|
|
if (unwrap(kwargs.get("mirostat"), False)) and not hasattr(gen_settings, "mirostat"):
|
|
print(" !! Warning: Currently installed ExLlamaV2 does not support Mirostat sampling")
|
|
|
|
if (unwrap(kwargs.get("min_p"), 0.0)) not in [0.0, 1.0] and not hasattr(gen_settings, "min_p"):
|
|
print(" !! Warning: Currently installed ExLlamaV2 does not support min-P sampling")
|
|
|
|
if (unwrap(kwargs.get("tfs"), 0.0)) not in [0.0, 1.0] and not hasattr(gen_settings, "tfs"):
|
|
print(" !! Warning: Currently installed ExLlamaV2 does not support tail-free sampling (TFS)")
|
|
|
|
if (unwrap(kwargs.get("temperature_last"), False)) and not hasattr(gen_settings, "temperature_last"):
|
|
print(" !! Warning: Currently installed ExLlamaV2 does not support temperature_last")
|
|
|
|
# Apply settings
|
|
gen_settings.temperature = unwrap(kwargs.get("temperature"), 1.0)
|
|
gen_settings.temperature_last = unwrap(kwargs.get("temperature_last"), False)
|
|
gen_settings.top_k = unwrap(kwargs.get("top_k"), 0)
|
|
gen_settings.top_p = unwrap(kwargs.get("top_p"), 1.0)
|
|
gen_settings.min_p = unwrap(kwargs.get("min_p"), 0.0)
|
|
gen_settings.tfs = unwrap(kwargs.get("tfs"), 1.0)
|
|
gen_settings.typical = unwrap(kwargs.get("typical"), 1.0)
|
|
gen_settings.mirostat = unwrap(kwargs.get("mirostat"), False)
|
|
|
|
# Default tau and eta fallbacks don't matter if mirostat is off
|
|
gen_settings.mirostat_tau = unwrap(kwargs.get("mirostat_tau"), 1.5)
|
|
gen_settings.mirostat_eta = unwrap(kwargs.get("mirostat_eta"), 0.1)
|
|
gen_settings.token_repetition_penalty = unwrap(kwargs.get("repetition_penalty"), 1.0)
|
|
gen_settings.token_repetition_range = unwrap(kwargs.get("repetition_range"), self.config.max_seq_len)
|
|
|
|
# Always make sure the fallback is 0 if range < 0
|
|
# It's technically fine to use -1, but this just validates the passed fallback
|
|
# Always default to 0 if something goes wrong
|
|
fallback_decay = 0 if gen_settings.token_repetition_range <= 0 else gen_settings.token_repetition_range
|
|
gen_settings.token_repetition_decay = coalesce(kwargs.get("repetition_decay"), fallback_decay, 0)
|
|
|
|
stop_conditions: List[Union[str, int]] = unwrap(kwargs.get("stop"), [])
|
|
add_bos_token = unwrap(kwargs.get("add_bos_token"), True)
|
|
ban_eos_token = unwrap(kwargs.get("ban_eos_token"), False)
|
|
logit_bias = kwargs.get("logit_bias")
|
|
|
|
# Override sampler settings for temp = 0
|
|
if gen_settings.temperature == 0:
|
|
gen_settings.temperature = 1.0
|
|
gen_settings.top_k = 1
|
|
gen_settings.top_p = 0
|
|
gen_settings.typical = 0
|
|
|
|
# Log generation options to console
|
|
# Some options are too large, so log the args instead
|
|
log_generation_params(
|
|
max_tokens = max_tokens,
|
|
**vars(gen_settings),
|
|
token_healing = token_healing,
|
|
add_bos_token = add_bos_token,
|
|
ban_eos_token = ban_eos_token,
|
|
stop_conditions = stop_conditions,
|
|
logit_bias = logit_bias
|
|
)
|
|
|
|
# Log prompt to console
|
|
log_prompt(prompt)
|
|
|
|
# Set logit bias
|
|
if logit_bias:
|
|
# Create a vocab tensor if it doesn't exist for token biasing
|
|
if gen_settings.token_bias is None:
|
|
padding = -self.tokenizer.config.vocab_size % 32
|
|
gen_settings.token_bias = torch.zeros((self.tokenizer.config.vocab_size + padding,), dtype = torch.float)
|
|
|
|
# Map logits to the tensor with their biases
|
|
for token, bias in logit_bias.items():
|
|
gen_settings.token_bias[token] = bias
|
|
|
|
# Ban the EOS token if specified. If not, append to stop conditions as well.
|
|
# Set this below logging to avoid polluting the stop strings array
|
|
if ban_eos_token:
|
|
gen_settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id])
|
|
else:
|
|
stop_conditions.append(self.tokenizer.eos_token_id)
|
|
|
|
# Stop conditions
|
|
self.generator.set_stop_conditions(stop_conditions)
|
|
|
|
# Tokenized context
|
|
ids = self.tokenizer.encode(
|
|
prompt,
|
|
add_bos = add_bos_token,
|
|
encode_special_tokens = True
|
|
)
|
|
context_len = len(ids[0])
|
|
|
|
if context_len > self.config.max_seq_len:
|
|
print(
|
|
f"WARNING: The context length {context_len} is greater than the max_seq_len {self.config.max_seq_len}.",
|
|
"Generation is truncated and metrics may not be accurate."
|
|
)
|
|
|
|
prompt_tokens = ids.shape[-1]
|
|
|
|
# Begin
|
|
generated_tokens = 0
|
|
full_response = ""
|
|
start_time = time.time()
|
|
last_chunk_time = start_time
|
|
|
|
save_tokens = torch.empty((1, 0), dtype = torch.bool)
|
|
chunk_buffer = ""
|
|
chunk_tokens = 0
|
|
|
|
while True:
|
|
# Ingest prompt
|
|
if chunk_tokens == 0:
|
|
ids = torch.cat((ids, save_tokens), dim = - 1)
|
|
save_tokens = torch.empty((1, 0), dtype = torch.bool)
|
|
overflow = ids.shape[-1] + generate_window - self.config.max_seq_len
|
|
active_ids = ids[:, max(0, overflow):]
|
|
chunk_tokens = self.config.max_seq_len - active_ids.shape[-1]
|
|
|
|
self.generator.begin_stream(active_ids, gen_settings, token_healing = token_healing, loras = self.active_loras)
|
|
|
|
# Generate
|
|
chunk, eos, tokens = self.generator.stream()
|
|
|
|
if token_healing:
|
|
ids[:, -1] = self.generator.sequence_ids[:, -2] # Extract healed token
|
|
token_healing = False
|
|
|
|
save_tokens = torch.cat((save_tokens, tokens), dim=-1)
|
|
chunk_buffer += chunk
|
|
|
|
generated_tokens += 1
|
|
chunk_tokens -= 1
|
|
|
|
# Yield output
|
|
now = time.time()
|
|
elapsed = now - last_chunk_time
|
|
|
|
if chunk_buffer != "" and (elapsed > stream_interval or eos or generated_tokens == max_tokens):
|
|
yield chunk_buffer, prompt_tokens, generated_tokens
|
|
full_response += chunk_buffer
|
|
chunk_buffer = ""
|
|
last_chunk_time = now
|
|
|
|
if eos or generated_tokens == max_tokens:
|
|
break
|
|
|
|
# Print response
|
|
log_response(full_response)
|
|
|
|
elapsed_time = last_chunk_time - start_time
|
|
|
|
initial_response = f"Metrics: {generated_tokens} tokens generated in {round(elapsed_time, 2)} seconds"
|
|
itemization = []
|
|
extra_parts = []
|
|
|
|
# Add tokens per second
|
|
itemization.append(f"{'Indeterminate' if elapsed_time == 0 else round(generated_tokens / elapsed_time, 2)} T/s")
|
|
|
|
# Add context (original token count)
|
|
if ids is not None:
|
|
itemization.append(f"context {context_len} tokens")
|
|
|
|
if context_len > self.config.max_seq_len:
|
|
extra_parts.append("<-- Not accurate (truncated)")
|
|
|
|
# Print output
|
|
print(initial_response + " (" + ", ".join(itemization) + ") " + " ".join(extra_parts))
|