tabbyAPI-ollama/main.py
kingbri 1a331afe3a OAI: Add cache_mode parameter to model
Mistakenly forgot that the user can choose what cache mode to use
when loading a model.

Also add when fetching model info.

Signed-off-by: kingbri <bdashore3@proton.me>
2023-12-16 02:47:50 -05:00

414 lines
16 KiB
Python

import uvicorn
import yaml
import pathlib
from asyncio import CancelledError
from fastapi import FastAPI, Request, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from progress.bar import IncrementalBar
from typing import Optional
from uuid import uuid4
import gen_logging
from auth import check_admin_key, check_api_key, load_auth_keys
from generators import generate_with_semaphore
from model import ModelContainer
from OAI.types.completion import CompletionRequest
from OAI.types.chat_completion import ChatCompletionRequest
from OAI.types.lora import LoraCard, LoraList, LoraLoadRequest, LoraLoadResponse
from OAI.types.model import ModelCard, ModelLoadRequest, ModelLoadResponse, ModelCardParameters
from OAI.types.token import (
TokenEncodeRequest,
TokenEncodeResponse,
TokenDecodeRequest,
TokenDecodeResponse
)
from OAI.utils import (
create_completion_response,
get_model_list,
get_lora_list,
get_chat_completion_prompt,
create_chat_completion_response,
create_chat_completion_stream_chunk
)
from utils import get_generator_error, get_sse_packet, load_progress, unwrap
app = FastAPI()
# Globally scoped variables. Undefined until initalized in main
model_container: Optional[ModelContainer] = None
config: dict = {}
def _check_model_container():
if model_container is None or model_container.model is None:
raise HTTPException(400, "No models are loaded.")
# ALlow CORS requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Model list endpoint
@app.get("/v1/models", dependencies=[Depends(check_api_key)])
@app.get("/v1/model/list", dependencies=[Depends(check_api_key)])
async def list_models():
model_config = unwrap(config.get("model"), {})
if "model_dir" in model_config:
model_path = pathlib.Path(model_config["model_dir"])
else:
model_path = pathlib.Path("models")
draft_config = unwrap(model_config.get("draft"), {})
draft_model_dir = draft_config.get("draft_model_dir")
models = get_model_list(model_path.resolve(), draft_model_dir)
if unwrap(model_config.get("use_dummy_models"), False):
models.data.insert(0, ModelCard(id = "gpt-3.5-turbo"))
return models
# Currently loaded model endpoint
@app.get("/v1/model", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
@app.get("/v1/internal/model/info", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def get_current_model():
model_name = model_container.get_model_path().name
model_card = ModelCard(
id = model_name,
parameters = ModelCardParameters(
rope_scale = model_container.config.scale_pos_emb,
rope_alpha = model_container.config.scale_alpha_value,
max_seq_len = model_container.config.max_seq_len,
cache_mode = "FP8" if model_container.cache_fp8 else "FP16",
prompt_template = unwrap(model_container.prompt_template, "auto")
),
logging = gen_logging.config
)
if model_container.draft_config:
draft_card = ModelCard(
id = model_container.get_model_path(True).name,
parameters = ModelCardParameters(
rope_scale = model_container.draft_config.scale_pos_emb,
rope_alpha = model_container.draft_config.scale_alpha_value,
max_seq_len = model_container.draft_config.max_seq_len
)
)
model_card.parameters.draft = draft_card
return model_card
# Load model endpoint
@app.post("/v1/model/load", dependencies=[Depends(check_admin_key)])
async def load_model(request: Request, data: ModelLoadRequest):
global model_container
if model_container and model_container.model:
raise HTTPException(400, "A model is already loaded! Please unload it first.")
if not data.name:
raise HTTPException(400, "model_name not found.")
model_config = unwrap(config.get("model"), {})
model_path = pathlib.Path(unwrap(model_config.get("model_dir"), "models"))
model_path = model_path / data.name
load_data = data.dict()
# TODO: Add API exception if draft directory isn't found
draft_config = unwrap(model_config.get("draft"), {})
if data.draft:
if not data.draft.draft_model_name:
raise HTTPException(400, "draft_model_name was not found inside the draft object.")
load_data["draft"]["draft_model_dir"] = unwrap(draft_config.get("draft_model_dir"), "models")
if not model_path.exists():
raise HTTPException(400, "model_path does not exist. Check model_name?")
model_container = ModelContainer(model_path.resolve(), False, **load_data)
async def generator():
global model_container
model_type = "draft" if model_container.draft_config else "model"
load_status = model_container.load_gen(load_progress)
try:
for (module, modules) in load_status:
if await request.is_disconnected():
break
if module == 0:
loading_bar: IncrementalBar = IncrementalBar("Modules", max = modules)
elif module == modules:
loading_bar.next()
loading_bar.finish()
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="finished"
)
yield get_sse_packet(response.json(ensure_ascii = False))
# Switch to model progress if the draft model is loaded
if model_container.draft_config:
model_type = "model"
else:
loading_bar.next()
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="processing"
)
yield get_sse_packet(response.json(ensure_ascii=False))
except CancelledError:
print("\nError: Model load cancelled by user. Please make sure to run unload to free up resources.")
except Exception as e:
yield get_generator_error(str(e))
return StreamingResponse(generator(), media_type = "text/event-stream")
# Unload model endpoint
@app.get("/v1/model/unload", dependencies=[Depends(check_admin_key), Depends(_check_model_container)])
async def unload_model():
global model_container
model_container.unload()
model_container = None
# Lora list endpoint
@app.get("/v1/loras", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
@app.get("/v1/lora/list", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def get_all_loras():
model_config = unwrap(config.get("model"), {})
lora_config = unwrap(model_config.get("lora"), {})
lora_path = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras"))
loras = get_lora_list(lora_path.resolve())
return loras
# Currently loaded loras endpoint
@app.get("/v1/lora", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def get_active_loras():
active_loras = LoraList(
data = list(map(
lambda lora: LoraCard(
id = pathlib.Path(lora.lora_path).parent.name,
scaling = lora.lora_scaling * lora.lora_r / lora.lora_alpha
),
model_container.active_loras
)
))
return active_loras
# Load lora endpoint
@app.post("/v1/lora/load", dependencies=[Depends(check_admin_key), Depends(_check_model_container)])
async def load_lora(data: LoraLoadRequest):
if not data.loras:
raise HTTPException(400, "List of loras to load is not found.")
model_config = unwrap(config.get("model"), {})
lora_config = unwrap(model_config.get("lora"), {})
lora_dir = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras"))
if not lora_dir.exists():
raise HTTPException(400, "A parent lora directory does not exist. Check your config.yml?")
# Clean-up existing loras if present
if len(model_container.active_loras) > 0:
model_container.unload(True)
result = model_container.load_loras(lora_dir, **data.dict())
return LoraLoadResponse(
success = unwrap(result.get("success"), []),
failure = unwrap(result.get("failure"), [])
)
# Unload lora endpoint
@app.get("/v1/lora/unload", dependencies=[Depends(check_admin_key), Depends(_check_model_container)])
async def unload_loras():
model_container.unload(True)
# Encode tokens endpoint
@app.post("/v1/token/encode", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def encode_tokens(data: TokenEncodeRequest):
raw_tokens = model_container.get_tokens(data.text, None, **data.get_params())
# Have to use this if check otherwise Torch's tensors error out with a boolean issue
tokens = raw_tokens[0].tolist() if raw_tokens is not None else []
response = TokenEncodeResponse(tokens=tokens, length=len(tokens))
return response
# Decode tokens endpoint
@app.post("/v1/token/decode", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def decode_tokens(data: TokenDecodeRequest):
message = model_container.get_tokens(None, data.tokens, **data.get_params())
response = TokenDecodeResponse(text = unwrap(message, ""))
return response
# Completions endpoint
@app.post("/v1/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def generate_completion(request: Request, data: CompletionRequest):
model_path = model_container.get_model_path()
if isinstance(data.prompt, list):
data.prompt = "\n".join(data.prompt)
if data.stream:
async def generator():
try:
new_generation = model_container.generate_gen(data.prompt, **data.to_gen_params())
for (part, prompt_tokens, completion_tokens) in new_generation:
if await request.is_disconnected():
break
response = create_completion_response(part,
prompt_tokens,
completion_tokens,
model_path.name)
yield get_sse_packet(response.json(ensure_ascii=False))
except CancelledError:
print("Error: Completion request cancelled by user.")
except Exception as e:
yield get_generator_error(str(e))
return StreamingResponse(
generate_with_semaphore(generator),
media_type = "text/event-stream"
)
else:
response_text, prompt_tokens, completion_tokens = model_container.generate(data.prompt, **data.to_gen_params())
response = create_completion_response(response_text,
prompt_tokens,
completion_tokens,
model_path.name)
return response
# Chat completions endpoint
@app.post("/v1/chat/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)])
async def generate_chat_completion(request: Request, data: ChatCompletionRequest):
model_path = model_container.get_model_path()
if isinstance(data.messages, str):
prompt = data.messages
else:
# If the request specified prompt template isn't found, use the one from model container
# Otherwise, let fastchat figure it out
prompt_template = unwrap(data.prompt_template, model_container.prompt_template)
try:
prompt = get_chat_completion_prompt(model_path.name, data.messages, prompt_template)
except KeyError:
return HTTPException(400, f"Could not find a Conversation from prompt template '{prompt_template}'. Check your spelling?")
if data.stream:
const_id = f"chatcmpl-{uuid4().hex}"
async def generator():
try:
new_generation = model_container.generate_gen(prompt, **data.to_gen_params())
for (part, _, _) in new_generation:
if await request.is_disconnected():
break
response = create_chat_completion_stream_chunk(
const_id,
part,
model_path.name
)
yield get_sse_packet(response.json(ensure_ascii=False))
# Yield a finish response on successful generation
finish_response = create_chat_completion_stream_chunk(
const_id,
finish_reason = "stop"
)
yield get_sse_packet(finish_response.json(ensure_ascii=False))
except CancelledError:
print("Error: Chat completion cancelled by user.")
except Exception as e:
yield get_generator_error(str(e))
return StreamingResponse(
generate_with_semaphore(generator),
media_type = "text/event-stream"
)
else:
response_text, prompt_tokens, completion_tokens = model_container.generate(prompt, **data.to_gen_params())
response = create_chat_completion_response(response_text,
prompt_tokens,
completion_tokens,
model_path.name)
return response
if __name__ == "__main__":
# Initialize auth keys
load_auth_keys()
# Load from YAML config. Possibly add a config -> kwargs conversion function
try:
with open('config.yml', 'r', encoding = "utf8") as config_file:
config = unwrap(yaml.safe_load(config_file), {})
except Exception as e:
print(
"The YAML config couldn't load because of the following error:",
f"\n\n{e}",
"\n\nTabbyAPI will start anyway and not parse this config file."
)
config = {}
# Override the generation log options if given
log_config = unwrap(config.get("logging"), {})
if log_config:
gen_logging.update_from_dict(log_config)
gen_logging.broadcast_status()
# If an initial model name is specified, create a container and load the model
model_config = unwrap(config.get("model"), {})
if "model_name" in model_config:
# TODO: Move this to model_container
model_path = pathlib.Path(unwrap(model_config.get("model_dir"), "models"))
model_path = model_path / model_config.get("model_name")
model_container = ModelContainer(model_path.resolve(), False, **model_config)
load_status = model_container.load_gen(load_progress)
for (module, modules) in load_status:
if module == 0:
loading_bar: IncrementalBar = IncrementalBar("Modules", max = modules)
elif module == modules:
loading_bar.next()
loading_bar.finish()
else:
loading_bar.next()
# Load loras
lora_config = unwrap(model_config.get("lora"), {})
if "loras" in lora_config:
lora_dir = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras"))
model_container.load_loras(lora_dir.resolve(), **lora_config)
network_config = unwrap(config.get("network"), {})
uvicorn.run(
app,
host=network_config.get("host", "127.0.0.1"),
port=network_config.get("port", 5000),
log_level="debug"
)