103 lines
2.7 KiB
Python
103 lines
2.7 KiB
Python
"""
|
|
Functions for logging generation events.
|
|
"""
|
|
|
|
from pydantic import BaseModel
|
|
from loguru import logger
|
|
from typing import Dict, Optional
|
|
|
|
|
|
class GenLogPreferences(BaseModel):
|
|
"""Logging preference config."""
|
|
|
|
prompt: bool = False
|
|
generation_params: bool = False
|
|
|
|
|
|
# Global logging preferences constant
|
|
PREFERENCES = GenLogPreferences()
|
|
|
|
|
|
def update_from_dict(options_dict: Dict[str, bool]):
|
|
"""Wrapper to set the logging config for generations"""
|
|
global PREFERENCES
|
|
|
|
# Force bools on the dict
|
|
for value in options_dict.values():
|
|
if value is None:
|
|
value = False
|
|
|
|
PREFERENCES = GenLogPreferences.model_validate(options_dict)
|
|
|
|
|
|
def broadcast_status():
|
|
"""Broadcasts the current logging status"""
|
|
enabled = []
|
|
if PREFERENCES.prompt:
|
|
enabled.append("prompts")
|
|
|
|
if PREFERENCES.generation_params:
|
|
enabled.append("generation params")
|
|
|
|
if len(enabled) > 0:
|
|
logger.info("Generation logging is enabled for: " + ", ".join(enabled))
|
|
else:
|
|
logger.info("Generation logging is disabled")
|
|
|
|
|
|
def log_generation_params(**kwargs):
|
|
"""Logs generation parameters to console."""
|
|
if PREFERENCES.generation_params:
|
|
logger.info(f"Generation options: {kwargs}\n")
|
|
|
|
|
|
def log_prompt(prompt: str, negative_prompt: Optional[str]):
|
|
"""Logs the prompt to console."""
|
|
if PREFERENCES.prompt:
|
|
formatted_prompt = "\n" + prompt
|
|
logger.info(f"Prompt: {formatted_prompt if prompt else 'Empty'}\n")
|
|
|
|
if negative_prompt:
|
|
formatted_negative_prompt = "\n" + negative_prompt
|
|
logger.info(f"Negative Prompt: {formatted_negative_prompt}\n")
|
|
|
|
|
|
def log_response(response: str):
|
|
"""Logs the response to console."""
|
|
if PREFERENCES.prompt:
|
|
formatted_response = "\n" + response
|
|
logger.info(f"Response: {formatted_response if response else 'Empty'}\n")
|
|
|
|
|
|
def log_metrics(
|
|
generated_tokens: int,
|
|
elapsed_time: float,
|
|
context_len: Optional[int],
|
|
max_seq_len: int,
|
|
):
|
|
initial_response = (
|
|
f"Metrics: {generated_tokens} tokens generated in "
|
|
f"{round(elapsed_time, 2)} seconds"
|
|
)
|
|
itemization = []
|
|
extra_parts = []
|
|
|
|
# Add tokens per second
|
|
tokens_per_second = (
|
|
"Indeterminate"
|
|
if elapsed_time == 0
|
|
else round(generated_tokens / elapsed_time, 2)
|
|
)
|
|
itemization.append(f"{tokens_per_second} T/s")
|
|
|
|
# Add context (original token count)
|
|
if context_len:
|
|
itemization.append(f"context {context_len} tokens")
|
|
|
|
if context_len > max_seq_len:
|
|
extra_parts.append("<-- Not accurate (truncated)")
|
|
|
|
# Print output
|
|
logger.info(
|
|
initial_response + " (" + ", ".join(itemization) + ") " + " ".join(extra_parts)
|
|
)
|