tabbyAPI-ollama/endpoints/OAI/utils/completion.py
kingbri 104a6121cb API: Split into separate folder
Moving the API into its own directory helps compartmentalize it
and allows for cleaning up the main file to just contain bootstrapping
and the entry point.

Signed-off-by: kingbri <bdashore3@proton.me>
2024-03-12 23:59:30 -04:00

154 lines
4.7 KiB
Python

""" Utility functions for the OpenAI server. """
from typing import Optional
from common.utils import unwrap
from endpoints.OAI.types.chat_completion import (
ChatCompletionLogprobs,
ChatCompletionLogprob,
ChatCompletionMessage,
ChatCompletionRespChoice,
ChatCompletionStreamChunk,
ChatCompletionResponse,
ChatCompletionStreamChoice,
)
from endpoints.OAI.types.completion import (
CompletionResponse,
CompletionRespChoice,
CompletionLogProbs,
)
from endpoints.OAI.types.common import UsageStats
def create_completion_response(generation: dict, model_name: Optional[str]):
"""Create a completion response from the provided text."""
logprob_response = None
token_probs = unwrap(generation.get("token_probs"), {})
if token_probs:
logprobs = unwrap(generation.get("logprobs"), [])
offset = unwrap(generation.get("offset"), [])
logprob_response = CompletionLogProbs(
text_offset=offset if isinstance(offset, list) else [offset],
token_logprobs=token_probs.values(),
tokens=token_probs.keys(),
top_logprobs=logprobs if isinstance(logprobs, list) else [logprobs],
)
choice = CompletionRespChoice(
finish_reason="Generated",
text=unwrap(generation.get("text"), ""),
logprobs=logprob_response,
)
prompt_tokens = unwrap(generation.get("prompt_tokens"), 0)
completion_tokens = unwrap(generation.get("generated_tokens"), 0)
response = CompletionResponse(
choices=[choice],
model=unwrap(model_name, ""),
usage=UsageStats(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return response
def create_chat_completion_response(generation: dict, model_name: Optional[str]):
"""Create a chat completion response from the provided text."""
message = ChatCompletionMessage(
role="assistant", content=unwrap(generation.get("text"), "")
)
logprob_response = None
token_probs = unwrap(generation.get("token_probs"), {})
if token_probs:
logprobs = unwrap(generation.get("logprobs"), [])
collected_token_probs = []
for index, token in enumerate(token_probs.keys()):
top_logprobs = [
ChatCompletionLogprob(token=token, logprob=logprob)
for token, logprob in logprobs[index].items()
]
collected_token_probs.append(
ChatCompletionLogprob(
token=token,
logprob=token_probs[token],
top_logprobs=top_logprobs,
)
)
logprob_response = ChatCompletionLogprobs(content=collected_token_probs)
choice = ChatCompletionRespChoice(
finish_reason="Generated", message=message, logprobs=logprob_response
)
prompt_tokens = unwrap(generation.get("prompt_tokens"), 0)
completion_tokens = unwrap(generation.get("completion_tokens"), 0)
response = ChatCompletionResponse(
choices=[choice],
model=unwrap(model_name, ""),
usage=UsageStats(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return response
def create_chat_completion_stream_chunk(
const_id: str,
generation: Optional[dict] = None,
model_name: Optional[str] = None,
finish_reason: Optional[str] = None,
):
"""Create a chat completion stream chunk from the provided text."""
logprob_response = None
if finish_reason:
message = {}
else:
message = ChatCompletionMessage(
role="assistant", content=unwrap(generation.get("text"), "")
)
token_probs = unwrap(generation.get("token_probs"), {})
if token_probs:
logprobs = unwrap(generation.get("logprobs"), {})
top_logprobs = [
ChatCompletionLogprob(token=token, logprob=logprob)
for token, logprob in logprobs.items()
]
generated_token = next(iter(token_probs))
token_prob_response = ChatCompletionLogprob(
token=generated_token,
logprob=token_probs[generated_token],
top_logprobs=top_logprobs,
)
logprob_response = ChatCompletionLogprobs(content=[token_prob_response])
# The finish reason can be None
choice = ChatCompletionStreamChoice(
finish_reason=finish_reason, delta=message, logprobs=logprob_response
)
chunk = ChatCompletionStreamChunk(
id=const_id, choices=[choice], model=unwrap(model_name, "")
)
return chunk