The HFModel class serves to coalesce all config files that contain random keys which are required for model usage. Adding this base class allows us to expand as HuggingFace randomly changes their JSON schemas over time, reducing the brunt that backend devs need to feel when their next model isn't supported. Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
246 lines
6.6 KiB
Python
246 lines
6.6 KiB
Python
import abc
|
|
import asyncio
|
|
import pathlib
|
|
from loguru import logger
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Dict,
|
|
List,
|
|
Optional,
|
|
)
|
|
from common.multimodal import MultimodalEmbeddingWrapper
|
|
from common.sampling import BaseSamplerRequest
|
|
from common.templating import PromptTemplate
|
|
from common.transformers_utils import HFModel
|
|
from endpoints.core.types.model import ModelCard
|
|
|
|
|
|
class BaseModelContainer(abc.ABC):
|
|
"""Abstract base class for model containers."""
|
|
|
|
# Exposed model information
|
|
model_dir: pathlib.Path = pathlib.Path("models")
|
|
prompt_template: Optional[PromptTemplate] = None
|
|
|
|
# HF Model instance
|
|
hf_model: HFModel
|
|
|
|
# Optional features
|
|
use_draft_model: bool = False
|
|
use_vision: bool = False
|
|
|
|
# Load synchronization
|
|
# The bool is a master switch for accepting requests
|
|
# The lock keeps load tasks sequential
|
|
# The condition notifies any waiting tasks
|
|
active_job_ids: Dict[str, Any] = {}
|
|
loaded: bool = False
|
|
load_lock: asyncio.Lock
|
|
load_condition: asyncio.Condition
|
|
|
|
# Required methods
|
|
@classmethod
|
|
@abc.abstractmethod
|
|
async def create(cls, model_directory: pathlib.Path, hf_model: HFModel, **kwargs):
|
|
"""
|
|
Asynchronously creates and initializes a model container instance.
|
|
|
|
Args:
|
|
model_directory: Path to the model files.
|
|
**kwargs: Backend-specific configuration options.
|
|
|
|
Returns:
|
|
An instance of the implementing class.
|
|
"""
|
|
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
async def load(self, progress_callback=None, **kwargs):
|
|
"""
|
|
Loads the model into memory.
|
|
|
|
Args:
|
|
progress_callback: Optional callback for progress updates.
|
|
**kwargs: Additional loading options.
|
|
"""
|
|
|
|
pass
|
|
|
|
# NOTE: Might be an optional method
|
|
@abc.abstractmethod
|
|
async def load_gen(self, progress_callback=None, **kwargs):
|
|
"""
|
|
Loads the model into memory, yielding progress updates.
|
|
|
|
Args:
|
|
progress_callback: Optional callback for progress updates.
|
|
**kwargs: Additional loading options.
|
|
|
|
Yields:
|
|
Progress updates
|
|
"""
|
|
|
|
if False:
|
|
yield
|
|
|
|
@abc.abstractmethod
|
|
async def unload(self, loras_only: bool = False, **kwargs):
|
|
"""
|
|
Unloads the model and associated resources from memory.
|
|
|
|
Args:
|
|
loras_only: If True, only unload LoRAs.
|
|
**kwargs: Additional unloading options (e.g., shutdown).
|
|
"""
|
|
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def encode_tokens(self, text: str, **kwargs) -> List[int]:
|
|
"""
|
|
Encodes a string of text into a list of token IDs.
|
|
|
|
Args:
|
|
text: The input text string.
|
|
**kwargs: Backend-specific encoding options (e.g., add_bos_token).
|
|
|
|
Returns:
|
|
A list of integer token IDs.
|
|
"""
|
|
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def decode_tokens(self, ids: List[int], **kwargs) -> str:
|
|
"""
|
|
Decodes a list of token IDs back into a string.
|
|
|
|
Args:
|
|
ids: A list of integer token IDs.
|
|
**kwargs: Backend-specific decoding options (e.g., decode_special_tokens).
|
|
|
|
Returns:
|
|
The decoded text string.
|
|
"""
|
|
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def get_special_tokens(self) -> Dict[str, Any]:
|
|
"""
|
|
Gets special tokens used by the model/tokenizer.
|
|
|
|
Returns:
|
|
A dictionary mapping special token names (e.g., 'bos_token', 'eos_token')
|
|
to their string or ID representation.
|
|
"""
|
|
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def model_info(self) -> ModelCard:
|
|
"""
|
|
Returns a dictionary of the current model's configuration parameters.
|
|
|
|
Returns:
|
|
Model parameters provided by the backend
|
|
"""
|
|
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
async def wait_for_jobs(self, skip_wait: bool = False):
|
|
"""
|
|
Waits for any active generation jobs to complete.
|
|
|
|
Args:
|
|
skip_wait: If True, cancel jobs immediately instead of waiting.
|
|
"""
|
|
|
|
pass
|
|
|
|
# Optional methods
|
|
async def load_loras(
|
|
self, lora_directory: pathlib.Path, **kwargs
|
|
) -> Dict[str, List[str]]:
|
|
"""
|
|
Loads LoRA adapters. Base implementation does nothing or raises error.
|
|
|
|
Args:
|
|
lora_directory: Path to the directory containing LoRA files.
|
|
**kwargs: LoRA configuration (e.g., list of loras, scaling).
|
|
|
|
Returns:
|
|
A dictionary indicating success/failure for each LoRA.
|
|
"""
|
|
|
|
logger.warning("LoRA loading not implemented for this backend.") # type: ignore
|
|
return {
|
|
"success": [],
|
|
"failure": [
|
|
lora.get("name", "unknown") for lora in kwargs.get("loras", [])
|
|
],
|
|
}
|
|
|
|
def get_loras(self) -> List[Any]:
|
|
"""
|
|
Gets the currently loaded LoRA adapters. Base implementation returns empty list.
|
|
|
|
Returns:
|
|
A list representing the loaded LoRAs (backend-specific format).
|
|
"""
|
|
|
|
return []
|
|
|
|
@abc.abstractmethod
|
|
async def generate(
|
|
self,
|
|
request_id: str,
|
|
prompt: str,
|
|
params: BaseSamplerRequest,
|
|
abort_event: Optional[asyncio.Event] = None,
|
|
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Generates a complete response for a given prompt and parameters.
|
|
|
|
Args:
|
|
request_id: Unique identifier for the generation request.
|
|
prompt: The input prompt string.
|
|
params: Sampling and generation parameters.
|
|
abort_event: An asyncio Event to signal cancellation.
|
|
mm_embeddings: Optional multimodal embeddings.
|
|
|
|
Returns:
|
|
A dictionary containing the generation info
|
|
"""
|
|
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
async def stream_generate(
|
|
self,
|
|
request_id: str,
|
|
prompt: str,
|
|
params: BaseSamplerRequest,
|
|
abort_event: Optional[asyncio.Event] = None,
|
|
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None,
|
|
) -> AsyncIterator[Dict[str, Any]]:
|
|
"""
|
|
Generates a response iteratively (streaming) for a given prompt.
|
|
|
|
Args:
|
|
request_id: Unique identifier for the generation request.
|
|
prompt: The input prompt string.
|
|
params: Sampling and generation parameters.
|
|
abort_event: An asyncio Event to signal cancellation.
|
|
mm_embeddings: Optional multimodal embeddings.
|
|
|
|
Yields:
|
|
Generation chunks
|
|
"""
|
|
|
|
if False:
|
|
yield
|