"""The main tabbyAPI module. Contains the FastAPI server and endpoints.""" import pathlib from asyncio import CancelledError from typing import Optional from uuid import uuid4 import uvicorn import yaml from fastapi import FastAPI, Depends, HTTPException, Request from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import StreamingResponse from functools import partial from progress.bar import IncrementalBar import gen_logging from auth import check_admin_key, check_api_key, load_auth_keys from generators import call_with_semaphore, generate_with_semaphore from model import ModelContainer from OAI.types.completion import CompletionRequest from OAI.types.chat_completion import ChatCompletionRequest from OAI.types.lora import LoraCard, LoraList, LoraLoadRequest, LoraLoadResponse from OAI.types.model import ( ModelCard, ModelLoadRequest, ModelLoadResponse, ModelCardParameters, ) from OAI.types.token import ( TokenEncodeRequest, TokenEncodeResponse, TokenDecodeRequest, TokenDecodeResponse, ) from OAI.utils_oai import ( create_completion_response, get_model_list, get_lora_list, create_chat_completion_response, create_chat_completion_stream_chunk, ) from templating import get_prompt_from_template from utils import get_generator_error, get_sse_packet, load_progress, unwrap app = FastAPI() # Globally scoped variables. Undefined until initalized in main MODEL_CONTAINER: Optional[ModelContainer] = None config: dict = {} def _check_model_container(): if MODEL_CONTAINER is None or MODEL_CONTAINER.model is None: raise HTTPException(400, "No models are loaded.") # ALlow CORS requests app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Model list endpoint @app.get("/v1/models", dependencies=[Depends(check_api_key)]) @app.get("/v1/model/list", dependencies=[Depends(check_api_key)]) async def list_models(): """Lists all models in the model directory.""" model_config = unwrap(config.get("model"), {}) model_dir = unwrap(model_config.get("model_dir"), "models") model_path = pathlib.Path(model_dir) draft_config = unwrap(model_config.get("draft"), {}) draft_model_dir = draft_config.get("draft_model_dir") models = get_model_list(model_path.resolve(), draft_model_dir) if unwrap(model_config.get("use_dummy_models"), False): models.data.insert(0, ModelCard(id="gpt-3.5-turbo")) return models # Currently loaded model endpoint @app.get( "/v1/model", dependencies=[Depends(check_api_key), Depends(_check_model_container)], ) @app.get( "/v1/internal/model/info", dependencies=[Depends(check_api_key), Depends(_check_model_container)], ) async def get_current_model(): """Returns the currently loaded model.""" model_name = MODEL_CONTAINER.get_model_path().name prompt_template = MODEL_CONTAINER.prompt_template model_card = ModelCard( id=model_name, parameters=ModelCardParameters( rope_scale=MODEL_CONTAINER.config.scale_pos_emb, rope_alpha=MODEL_CONTAINER.config.scale_alpha_value, max_seq_len=MODEL_CONTAINER.config.max_seq_len, cache_mode="FP8" if MODEL_CONTAINER.cache_fp8 else "FP16", prompt_template=prompt_template.name if prompt_template else None, ), logging=gen_logging.CONFIG, ) if MODEL_CONTAINER.draft_config: draft_card = ModelCard( id=MODEL_CONTAINER.get_model_path(True).name, parameters=ModelCardParameters( rope_scale=MODEL_CONTAINER.draft_config.scale_pos_emb, rope_alpha=MODEL_CONTAINER.draft_config.scale_alpha_value, max_seq_len=MODEL_CONTAINER.draft_config.max_seq_len, ), ) model_card.parameters.draft = draft_card return model_card @app.get("/v1/model/draft/list", dependencies=[Depends(check_api_key)]) async def list_draft_models(): """Lists all draft models in the model directory.""" model_config = unwrap(config.get("model"), {}) draft_config = unwrap(model_config.get("draft"), {}) draft_model_dir = unwrap(draft_config.get("draft_model_dir"), "models") draft_model_path = pathlib.Path(draft_model_dir) models = get_model_list(draft_model_path.resolve()) return models # Load model endpoint @app.post("/v1/model/load", dependencies=[Depends(check_admin_key)]) async def load_model(request: Request, data: ModelLoadRequest): """Loads a model into the model container.""" global MODEL_CONTAINER if MODEL_CONTAINER and MODEL_CONTAINER.model: raise HTTPException(400, "A model is already loaded! Please unload it first.") if not data.name: raise HTTPException(400, "model_name not found.") model_config = unwrap(config.get("model"), {}) model_path = pathlib.Path(unwrap(model_config.get("model_dir"), "models")) model_path = model_path / data.name load_data = data.model_dump() draft_config = unwrap(model_config.get("draft"), {}) if data.draft: if not data.draft.draft_model_name: raise HTTPException( 400, "draft_model_name was not found inside the draft object." ) load_data["draft"]["draft_model_dir"] = unwrap( draft_config.get("draft_model_dir"), "models" ) if not model_path.exists(): raise HTTPException(400, "model_path does not exist. Check model_name?") MODEL_CONTAINER = ModelContainer(model_path.resolve(), False, **load_data) async def generator(): """Generator for the loading process.""" model_type = "draft" if MODEL_CONTAINER.draft_config else "model" load_status = MODEL_CONTAINER.load_gen(load_progress) try: for module, modules in load_status: if await request.is_disconnected(): break if module == 0: loading_bar: IncrementalBar = IncrementalBar("Modules", max=modules) elif module == modules: loading_bar.next() loading_bar.finish() response = ModelLoadResponse( model_type=model_type, module=module, modules=modules, status="finished", ) yield get_sse_packet(response.model_dump_json()) # Switch to model progress if the draft model is loaded if MODEL_CONTAINER.draft_config: model_type = "model" else: loading_bar.next() response = ModelLoadResponse( model_type=model_type, module=module, modules=modules, status="processing", ) yield get_sse_packet(response.model_dump_json()) except CancelledError: print( "\nError: Model load cancelled by user. " "Please make sure to run unload to free up resources." ) except Exception as exc: yield get_generator_error(str(exc)) return StreamingResponse(generator(), media_type="text/event-stream") # Unload model endpoint @app.get( "/v1/model/unload", dependencies=[Depends(check_admin_key), Depends(_check_model_container)], ) async def unload_model(): """Unloads the currently loaded model.""" global MODEL_CONTAINER MODEL_CONTAINER.unload() MODEL_CONTAINER = None # Lora list endpoint @app.get("/v1/loras", dependencies=[Depends(check_api_key)]) @app.get("/v1/lora/list", dependencies=[Depends(check_api_key)]) async def get_all_loras(): """Lists all LoRAs in the lora directory.""" model_config = unwrap(config.get("model"), {}) lora_config = unwrap(model_config.get("lora"), {}) lora_path = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras")) loras = get_lora_list(lora_path.resolve()) return loras # Currently loaded loras endpoint @app.get( "/v1/lora", dependencies=[Depends(check_api_key), Depends(_check_model_container)], ) async def get_active_loras(): """Returns the currently loaded loras.""" active_loras = LoraList( data=list( map( lambda lora: LoraCard( id=pathlib.Path(lora.lora_path).parent.name, scaling=lora.lora_scaling * lora.lora_r / lora.lora_alpha, ), MODEL_CONTAINER.active_loras, ) ) ) return active_loras # Load lora endpoint @app.post( "/v1/lora/load", dependencies=[Depends(check_admin_key), Depends(_check_model_container)], ) async def load_lora(data: LoraLoadRequest): """Loads a LoRA into the model container.""" if not data.loras: raise HTTPException(400, "List of loras to load is not found.") model_config = unwrap(config.get("model"), {}) lora_config = unwrap(model_config.get("lora"), {}) lora_dir = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras")) if not lora_dir.exists(): raise HTTPException( 400, "A parent lora directory does not exist. Check your config.yml?", ) # Clean-up existing loras if present if len(MODEL_CONTAINER.active_loras) > 0: MODEL_CONTAINER.unload(True) result = MODEL_CONTAINER.load_loras(lora_dir, **data.model_dump()) return LoraLoadResponse( success=unwrap(result.get("success"), []), failure=unwrap(result.get("failure"), []), ) # Unload lora endpoint @app.get( "/v1/lora/unload", dependencies=[Depends(check_admin_key), Depends(_check_model_container)], ) async def unload_loras(): """Unloads the currently loaded loras.""" MODEL_CONTAINER.unload(True) # Encode tokens endpoint @app.post( "/v1/token/encode", dependencies=[Depends(check_api_key), Depends(_check_model_container)], ) async def encode_tokens(data: TokenEncodeRequest): """Encodes a string into tokens.""" raw_tokens = MODEL_CONTAINER.get_tokens(data.text, None, **data.get_params()) # Have to use this if check otherwise Torch's tensors error out # with a boolean issue tokens = raw_tokens[0].tolist() if raw_tokens is not None else [] response = TokenEncodeResponse(tokens=tokens, length=len(tokens)) return response # Decode tokens endpoint @app.post( "/v1/token/decode", dependencies=[Depends(check_api_key), Depends(_check_model_container)], ) async def decode_tokens(data: TokenDecodeRequest): """Decodes tokens into a string.""" message = MODEL_CONTAINER.get_tokens(None, data.tokens, **data.get_params()) response = TokenDecodeResponse(text=unwrap(message, "")) return response # Completions endpoint @app.post( "/v1/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)], ) async def generate_completion(request: Request, data: CompletionRequest): """Generates a completion from a prompt.""" model_path = MODEL_CONTAINER.get_model_path() if isinstance(data.prompt, list): data.prompt = "\n".join(data.prompt) if data.stream: async def generator(): """Generator for the generation process.""" try: new_generation = MODEL_CONTAINER.generate_gen( data.prompt, **data.to_gen_params() ) for part, prompt_tokens, completion_tokens in new_generation: if await request.is_disconnected(): break response = create_completion_response( part, prompt_tokens, completion_tokens, model_path.name ) yield get_sse_packet(response.model_dump_json()) except CancelledError: print("Error: Completion request cancelled by user.") except Exception as exc: yield get_generator_error(str(exc)) return StreamingResponse( generate_with_semaphore(generator), media_type="text/event-stream" ) response_text, prompt_tokens, completion_tokens = await call_with_semaphore( partial(MODEL_CONTAINER.generate, data.prompt, **data.to_gen_params()) ) response = create_completion_response( response_text, prompt_tokens, completion_tokens, model_path.name ) return response # Chat completions endpoint @app.post( "/v1/chat/completions", dependencies=[Depends(check_api_key), Depends(_check_model_container)], ) async def generate_chat_completion(request: Request, data: ChatCompletionRequest): """Generates a chat completion from a prompt.""" if MODEL_CONTAINER.prompt_template is None: return HTTPException( 422, "This endpoint is disabled because a prompt template is not set.", ) model_path = MODEL_CONTAINER.get_model_path() if isinstance(data.messages, str): prompt = data.messages else: try: special_tokens_dict = MODEL_CONTAINER.get_special_tokens( unwrap(data.add_bos_token, True), unwrap(data.ban_eos_token, False), ) prompt = get_prompt_from_template( data.messages, MODEL_CONTAINER.prompt_template, data.add_generation_prompt, special_tokens_dict, ) except KeyError: return HTTPException( 400, "Could not find a Conversation from prompt template " f"'{MODEL_CONTAINER.prompt_template.name}'. " "Check your spelling?", ) if data.stream: const_id = f"chatcmpl-{uuid4().hex}" async def generator(): """Generator for the generation process.""" try: new_generation = MODEL_CONTAINER.generate_gen( prompt, **data.to_gen_params() ) for part, _, _ in new_generation: if await request.is_disconnected(): break response = create_chat_completion_stream_chunk( const_id, part, model_path.name ) yield get_sse_packet(response.model_dump_json()) # Yield a finish response on successful generation finish_response = create_chat_completion_stream_chunk( const_id, finish_reason="stop" ) yield get_sse_packet(finish_response.model_dump_json()) except CancelledError: print("Error: Chat completion cancelled by user.") except Exception as exc: yield get_generator_error(str(exc)) return StreamingResponse( generate_with_semaphore(generator), media_type="text/event-stream" ) response_text, prompt_tokens, completion_tokens = await call_with_semaphore( partial(MODEL_CONTAINER.generate, prompt, **data.to_gen_params()) ) response = create_chat_completion_response( response_text, prompt_tokens, completion_tokens, model_path.name ) return response if __name__ == "__main__": # Load from YAML config. Possibly add a config -> kwargs conversion function try: with open("config.yml", "r", encoding="utf8") as config_file: config = unwrap(yaml.safe_load(config_file), {}) except Exception as exc: print( "The YAML config couldn't load because of the following error:", f"\n\n{exc}", "\n\nTabbyAPI will start anyway and not parse this config file.", ) config = {} network_config = unwrap(config.get("network"), {}) # Initialize auth keys load_auth_keys(unwrap(network_config.get("disable_auth"), False)) # Override the generation log options if given log_config = unwrap(config.get("logging"), {}) if log_config: gen_logging.update_from_dict(log_config) gen_logging.broadcast_status() # If an initial model name is specified, create a container # and load the model model_config = unwrap(config.get("model"), {}) if "model_name" in model_config: model_path = pathlib.Path(unwrap(model_config.get("model_dir"), "models")) model_path = model_path / model_config.get("model_name") MODEL_CONTAINER = ModelContainer(model_path.resolve(), False, **model_config) load_status = MODEL_CONTAINER.load_gen(load_progress) for module, modules in load_status: if module == 0: loading_bar: IncrementalBar = IncrementalBar("Modules", max=modules) elif module == modules: loading_bar.next() loading_bar.finish() else: loading_bar.next() # Load loras lora_config = unwrap(model_config.get("lora"), {}) if "loras" in lora_config: lora_dir = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras")) MODEL_CONTAINER.load_loras(lora_dir.resolve(), **lora_config) uvicorn.run( app, host=network_config.get("host", "127.0.0.1"), port=network_config.get("port", 5000), log_level="debug", )