"""The main tabbyAPI module. Contains the FastAPI server and endpoints.""" import asyncio import aiofiles import json import os import pathlib import signal from loguru import logger from typing import Optional from common import config, gen_logging, sampling, model from common.args import convert_args_to_dict, init_argparser from common.auth import load_auth_keys from common.logger import setup_logger from common.networking import is_port_in_use from common.signals import signal_handler from common.utils import unwrap from endpoints.server import export_openapi, start_api from endpoints.utils import do_export_openapi if not do_export_openapi: from backends.exllamav2.utils import check_exllama_version async def entrypoint(args: Optional[dict] = None): """Entry function for program startup""" setup_logger() # Set up signal aborting signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) if os.getenv("EXPORT_OPENAPI", "").lower() in ("true", "1"): openapi_json = export_openapi() async with aiofiles.open("openapi.json", "w") as f: await f.write(json.dumps(openapi_json)) logger.info("Successfully wrote OpenAPI spec to openapi.json") return # Load from YAML config config.from_file(pathlib.Path("config.yml")) # Parse and override config from args if args is None: parser = init_argparser() args = convert_args_to_dict(parser.parse_args(), parser) config.from_args(args) developer_config = config.developer_config() # Check exllamav2 version and give a descriptive error if it's too old # Skip if launching unsafely if unwrap(developer_config.get("unsafe_launch"), False): logger.warning( "UNSAFE: Skipping ExllamaV2 version check.\n" "If you aren't a developer, please keep this off!" ) else: check_exllama_version() # Enable CUDA malloc backend if unwrap(developer_config.get("cuda_malloc_backend"), False): os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "backend:cudaMallocAsync" logger.warning("Enabled the experimental CUDA malloc backend.") network_config = config.network_config() host = unwrap(network_config.get("host"), "127.0.0.1") port = unwrap(network_config.get("port"), 5000) # Check if the port is available and attempt to bind a fallback if is_port_in_use(port): fallback_port = port + 1 if is_port_in_use(fallback_port): logger.error( f"Ports {port} and {fallback_port} are in use by different services.\n" "Please free up those ports or specify a different one.\n" "Exiting." ) return else: logger.warning( f"Port {port} is currently in use. Switching to {fallback_port}." ) port = fallback_port # Initialize auth keys load_auth_keys(unwrap(network_config.get("disable_auth"), False)) # Override the generation log options if given log_config = config.gen_logging_config() if log_config: gen_logging.update_from_dict(log_config) gen_logging.broadcast_status() # Set sampler parameter overrides if provided sampling_config = config.sampling_config() sampling_override_preset = sampling_config.get("override_preset") if sampling_override_preset: try: sampling.overrides_from_file(sampling_override_preset) except FileNotFoundError as e: logger.warning(str(e)) # If an initial model name is specified, create a container # and load the model model_config = config.model_config() model_name = model_config.get("model_name") if model_name: model_path = pathlib.Path(unwrap(model_config.get("model_dir"), "models")) model_path = model_path / model_name await model.load_model(model_path.resolve(), **model_config) # Load loras after loading the model lora_config = config.lora_config() if lora_config.get("loras"): lora_dir = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras")) await model.container.load_loras(lora_dir.resolve(), **lora_config) await start_api(host, port) if __name__ == "__main__": asyncio.run(entrypoint())