"""The main tabbyAPI module. Contains the FastAPI server and endpoints.""" import asyncio import json import os import pathlib import platform import signal from loguru import logger from typing import Optional from common import gen_logging, sampling, model from common.args import convert_args_to_dict, init_argparser from common.auth import load_auth_keys from common.logger import setup_logger from common.networking import is_port_in_use from common.signals import signal_handler from common.tabby_config import config from common.utils import unwrap from endpoints.server import export_openapi, start_api from endpoints.utils import do_export_openapi if not do_export_openapi: from backends.exllamav2.utils import check_exllama_version async def entrypoint_async(): """Async entry function for program startup""" host = config.network.host port = config.network.port # Check if the port is available and attempt to bind a fallback if is_port_in_use(port): fallback_port = port + 1 if is_port_in_use(fallback_port): logger.error( f"Ports {port} and {fallback_port} are in use by different services.\n" "Please free up those ports or specify a different one.\n" "Exiting." ) return else: logger.warning( f"Port {port} is currently in use. Switching to {fallback_port}." ) port = fallback_port # Initialize auth keys load_auth_keys(config.network.disable_auth) gen_logging.broadcast_status() # Set sampler parameter overrides if provided sampling_override_preset = config.sampling.override_preset if sampling_override_preset: try: sampling.overrides_from_file(sampling_override_preset) except FileNotFoundError as e: logger.warning(str(e)) # If an initial model name is specified, create a container # and load the model model_name = config.model.model_name if model_name: model_path = pathlib.Path(config.model.model_dir) model_path = model_path / model_name await model.load_model(model_path.resolve(), **config.model) # Load loras after loading the model if config.lora.loras: lora_dir = pathlib.Path(config.lora.lora_dir) await model.container.load_loras(lora_dir.resolve(), **config.lora) # If an initial embedding model name is specified, create a separate container # and load the model embedding_model_name = config.embeddings.embedding_model_name if embedding_model_name: embedding_model_path = pathlib.Path(config.embeddings.embedding_model_dir) embedding_model_path = embedding_model_path / embedding_model_name try: await model.load_embedding_model(embedding_model_path, **config.embeddings) except ImportError as ex: logger.error(ex.msg) await start_api(host, port) def entrypoint(arguments: Optional[dict] = None): setup_logger() # Set up signal aborting signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) # Parse and override config from args if arguments is None: parser = init_argparser() arguments = convert_args_to_dict(parser.parse_args(), parser) # load config config.load_config(arguments) if do_export_openapi: openapi_json = export_openapi() with open("openapi.json", "w") as f: f.write(json.dumps(openapi_json)) logger.info("Successfully wrote OpenAPI spec to openapi.json") return # Check exllamav2 version and give a descriptive error if it's too old # Skip if launching unsafely print(f"MAIN.PY {config=}") if config.developer.unsafe_launch: logger.warning( "UNSAFE: Skipping ExllamaV2 version check.\n" "If you aren't a developer, please keep this off!" ) else: check_exllama_version() # Enable CUDA malloc backend if config.developer.cuda_malloc_backend: os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "backend:cudaMallocAsync" logger.warning("EXPERIMENTAL: Enabled the pytorch CUDA malloc backend.") # Use Uvloop/Winloop if config.developer.uvloop: if platform.system() == "Windows": from winloop import install else: from uvloop import install # Set loop event policy install() logger.warning("EXPERIMENTAL: Running program with Uvloop/Winloop.") # Set the process priority if config.developer.realtime_process_priority: import psutil current_process = psutil.Process(os.getpid()) if platform.system() == "Windows": current_process.nice(psutil.REALTIME_PRIORITY_CLASS) else: current_process.nice(psutil.IOPRIO_CLASS_RT) logger.warning( "EXPERIMENTAL: Process priority set to Realtime. \n" "If you're not running on administrator/sudo, the priority is set to high." ) # Enter into the async event loop asyncio.run(entrypoint_async()) if __name__ == "__main__": entrypoint()