"""Chat completion utilities for OAI server.""" import asyncio import pathlib from asyncio import CancelledError from typing import List, Optional import json from datetime import datetime from fastapi import HTTPException, Request from jinja2 import TemplateError from loguru import logger from common import model from common.multimodal import MultimodalEmbeddingWrapper from common.networking import ( get_generator_error, handle_request_disconnect, handle_request_error, request_disconnect_loop, ) from common.utils import unwrap from endpoints.OAI.types.chat_completion import ( ChatCompletionLogprobs, ChatCompletionLogprob, ChatCompletionMessage, ChatCompletionRequest, ChatCompletionRespChoice, ChatCompletionStreamChunk, ChatCompletionResponse, ChatCompletionStreamChoice, ) from endpoints.OAI.types.common import UsageStats from endpoints.OAI.utils.completion import _parse_gen_request_id, _stream_collector from endpoints.OAI.utils.tools import ToolCallProcessor, TOOL_CALL_SCHEMA def _create_response( request_id: str, generations: List[dict], model_name: Optional[str] ): """Create a chat completion response from the provided text.""" choices = [] for index, generation in enumerate(generations): message = ChatCompletionMessage( role="assistant", content=unwrap(generation.get("text"), "") ) tool_calls = generation["tool_calls"] if tool_calls: message.tool_calls = ToolCallProcessor.from_json(tool_calls) logprob_response = None token_probs = unwrap(generation.get("token_probs"), {}) if token_probs: logprobs = unwrap(generation.get("logprobs"), []) collected_token_probs = [] for index, token in enumerate(token_probs.keys()): top_logprobs = [ ChatCompletionLogprob(token=token, logprob=logprob) for token, logprob in logprobs[index].items() ] collected_token_probs.append( ChatCompletionLogprob( token=token, logprob=token_probs[token], top_logprobs=top_logprobs, ) ) logprob_response = ChatCompletionLogprobs(content=collected_token_probs) # Set finish reason if message.tool_calls: finish_reason = "tool_calls" else: finish_reason = generation.get("finish_reason", "stop") choice = ChatCompletionRespChoice( index=index, finish_reason=finish_reason, stop_str=generation.get("stop_str"), message=message, logprobs=logprob_response, ) choices.append(choice) final_generation = generations[-1] prompt_tokens = unwrap(final_generation.get("prompt_tokens"), 0) completion_tokens = unwrap(final_generation.get("gen_tokens"), 0) response = ChatCompletionResponse( id=f"cmpl-{request_id}", choices=choices, model=model_name, usage=UsageStats( prompt_tokens=prompt_tokens, prompt_time=final_generation.get("prompt_time"), prompt_tokens_per_sec=final_generation.get("prompt_tokens_per_sec"), completion_tokens=completion_tokens, completion_time=final_generation.get("gen_time"), completion_tokens_per_sec=final_generation.get("gen_tokens_per_sec"), total_tokens=prompt_tokens + completion_tokens, total_time=final_generation.get("total_time"), ), ) return response def _create_stream_chunk_ollama( request_id: str, generation: Optional[dict] = None, model_name: Optional[str] = None, is_usage_chunk: bool = False, ): """Create a chat completion stream chunk from the provided text.""" index = generation.get("index") choices = [] usage_stats = None if is_usage_chunk: prompt_tokens = unwrap(generation.get("prompt_tokens"), 0) completion_tokens = unwrap(generation.get("generated_tokens"), 0) usage_stats = UsageStats( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) elif "finish_reason" in generation: choice = ChatCompletionStreamChoice( index=index, finish_reason=generation.get("finish_reason"), ) # lets check if we have tool calls since we are at the end of the generation if "tool_calls" in generation: tool_calls = generation["tool_calls"] message = ChatCompletionMessage( tool_calls=postprocess_tool_call(tool_calls) ) choice.delta = message choices.append(choice) else: message = ChatCompletionMessage( role="assistant", content=unwrap(generation.get("text"), "") ) logprob_response = None token_probs = unwrap(generation.get("token_probs"), {}) if token_probs: logprobs = unwrap(generation.get("logprobs"), {}) top_logprobs = [ ChatCompletionLogprob(token=token, logprob=logprob) for token, logprob in logprobs.items() ] generated_token = next(iter(token_probs)) token_prob_response = ChatCompletionLogprob( token=generated_token, logprob=token_probs[generated_token], top_logprobs=top_logprobs, ) logprob_response = ChatCompletionLogprobs(content=[token_prob_response]) choice = ChatCompletionStreamChoice( index=index, delta=message, logprobs=logprob_response, ) ollama_bit = { "model":model_name, "created_at": datetime.utcnow().isoformat(timespec='microseconds') + "Z", "message": {"role":choice.delta.role if hasattr(choice.delta, 'role') else 'none', "content": choice.delta.content if hasattr(choice.delta, 'content') else 'none'}, "done_reason": choice.finish_reason, "done": choice.finish_reason=="stop", } return ollama_bit def _create_stream_chunk( request_id: str, generation: Optional[dict] = None, model_name: Optional[str] = None, is_usage_chunk: bool = False, ): """Create a chat completion stream chunk from the provided text.""" index = generation.get("index") choices = [] usage_stats = None if is_usage_chunk: prompt_tokens = unwrap(generation.get("prompt_tokens"), 0) completion_tokens = unwrap(generation.get("gen_tokens"), 0) usage_stats = UsageStats( prompt_tokens=prompt_tokens, prompt_time=generation.get("prompt_time"), prompt_tokens_per_sec=generation.get("prompt_tokens_per_sec"), completion_tokens=completion_tokens, completion_time=generation.get("gen_time"), completion_tokens_per_sec=generation.get("gen_tokens_per_sec"), total_tokens=prompt_tokens + completion_tokens, total_time=generation.get("total_time"), ) elif "finish_reason" in generation: # Get the finish reason from the generation finish_reason = generation.get("finish_reason") choice = ChatCompletionStreamChoice(index=index, finish_reason=finish_reason) # lets check if we have tool calls since we are at the end of the generation # Mark finish_reason as tool_calls since this is the last chunk if "tool_calls" in generation: tool_calls = generation["tool_calls"] message = ChatCompletionMessage( tool_calls=ToolCallProcessor.from_json(tool_calls) ) choice.delta = message choice.finish_reason = "tool_calls" choices.append(choice) else: message = ChatCompletionMessage( role="assistant", content=unwrap(generation.get("text"), "") ) logprob_response = None token_probs = unwrap(generation.get("token_probs"), {}) if token_probs: logprobs = unwrap(generation.get("logprobs"), {}) top_logprobs = [ ChatCompletionLogprob(token=token, logprob=logprob) for token, logprob in logprobs.items() ] generated_token = next(iter(token_probs)) token_prob_response = ChatCompletionLogprob( token=generated_token, logprob=token_probs[generated_token], top_logprobs=top_logprobs, ) logprob_response = ChatCompletionLogprobs(content=[token_prob_response]) choice = ChatCompletionStreamChoice( index=index, delta=message, logprobs=logprob_response, ) choices.append(choice) chunk = ChatCompletionStreamChunk( id=f"chatcmpl-{request_id}", choices=choices, model=unwrap(model_name, ""), usage=usage_stats, ) return chunk async def _append_template_metadata(data: ChatCompletionRequest, template_vars: dict): """Adding metadata is a one-time process.""" template_metadata = await model.container.prompt_template.extract_metadata( template_vars ) # Stop strings if isinstance(data.stop, str): data.stop = [data.stop] + template_metadata.stop_strings else: data.stop.extend(template_metadata.stop_strings) # if a tool start is present, append it to stopping strings if template_metadata.tool_start: data.stop.append(template_metadata.tool_start) async def format_messages_with_template( messages: List[ChatCompletionMessage], existing_template_vars: Optional[dict] = None, ): """Barebones function to format chat completion messages into a prompt.""" template_vars = unwrap(existing_template_vars, {}) mm_embeddings = MultimodalEmbeddingWrapper() if model.container.use_vision else None # Convert all messages to a dictionary representation message_dicts: List[dict] = [] for message in messages: if isinstance(message.content, list): concatenated_content = "" for content in message.content: if content.type == "text": concatenated_content += content.text elif content.type == "image_url" and mm_embeddings: await mm_embeddings.add(content.image_url.url) concatenated_content += mm_embeddings.text_alias[-1] # Convert the message content into a concatenated string message.content = concatenated_content message_dicts.append(message.model_dump(exclude_none=True)) # Get all special tokens special_tokens_dict = model.container.get_special_tokens() template_vars.update({"messages": message_dicts, **special_tokens_dict}) prompt = await model.container.prompt_template.render(template_vars) return prompt, mm_embeddings, template_vars async def apply_chat_template(data: ChatCompletionRequest): """ Compile the prompt and get any additional stop strings from the template. Template stop strings can be overriden by sampler overrides if force is true. """ # Locally store tools dict tools = data.model_dump()["tools"] try: data.template_vars.update( { "add_generation_prompt": data.add_generation_prompt, "tools": tools, "functions": data.functions, } ) prompt, mm_embeddings, template_vars = await format_messages_with_template( data.messages, data.template_vars ) # Append response prefix if present if data.response_prefix: if data.add_generation_prompt: prompt += data.response_prefix else: logger.warning( "Could not add response prefix because " "add_generation_prompt is False" ) # Removes the starting BOS token if the model adds one # This is to prevent add_bos_token from adding multiple bos tokens bos_token = template_vars.get("bos_token") if ( bos_token and model.container.hf_model.add_bos_token() and prompt.startswith(bos_token) ): prompt = prompt.removeprefix(bos_token) # Add template metadata await _append_template_metadata(data, template_vars) return prompt, mm_embeddings except KeyError as exc: error_message = handle_request_error( "Could not find a Conversation from prompt template " f"'{model.container.prompt_template.name}'. " "Check your spelling?", ).error.message raise HTTPException(400, error_message) from exc except TemplateError as exc: error_message = handle_request_error(f"TemplateError: {str(exc)}").error.message raise HTTPException(400, error_message) from exc async def stream_generate_chat_completion_ollama( prompt: str, data: ChatCompletionRequest, request: Request, model_path: pathlib.Path ): """Generator for the generation process.""" abort_event = asyncio.Event() gen_queue = asyncio.Queue() gen_tasks: List[asyncio.Task] = [] disconnect_task = asyncio.create_task(request_disconnect_loop(request)) try: logger.info(f"Received chat completion streaming request {request.state.id}") gen_params = data.to_gen_params() for n in range(0, data.n): if n > 0: task_gen_params = deepcopy(gen_params) else: task_gen_params = gen_params gen_task = asyncio.create_task( _stream_collector( n, gen_queue, prompt, request.state.id, abort_event, **task_gen_params, ) ) gen_tasks.append(gen_task) # We need to keep track of the text generated so we can resume the tool calls current_generation_text = "" # Consumer loop while True: if disconnect_task.done(): abort_event.set() handle_request_disconnect( f"Chat completion generation {request.state.id} cancelled by user." ) generation = await gen_queue.get() # lets only append the text if we need it for tool calls later if data.tool_call_start and "text" in generation: current_generation_text += generation["text"] # check if we are running a tool model, and that we are at stop if data.tool_call_start and "stop_str" in generation: generations = await generate_tool_calls( data, [generation], request, current_generations=current_generation_text, ) generation = generations[0] # We only have one generation in this case # Stream collector will push an exception to the queue if it fails if isinstance(generation, Exception): raise generation chunk = _create_stream_chunk_ollama( request.state.id, generation, model_path.name ) yield chunk # Check if all tasks are completed if all(task.done() for task in gen_tasks) and gen_queue.empty(): # Send a usage chunk if data.stream_options and data.stream_options.include_usage: usage_chunk = _create_stream_chunk_ollama( request.state.id, generation, model_path.name, is_usage_chunk=True, ) yield usage_chunk logger.info( f"Finished chat completion streaming request {request.state.id}" ) break except CancelledError: # Get out if the request gets disconnected if not disconnect_task.done(): abort_event.set() handle_request_disconnect("Chat completion generation cancelled by user.") except Exception: yield get_generator_error( "Chat completion aborted. Please check the server console." ) async def stream_generate_chat_completion( prompt: str, embeddings: MultimodalEmbeddingWrapper, data: ChatCompletionRequest, request: Request, model_path: pathlib.Path, ): """Generator for the generation process.""" abort_event = asyncio.Event() gen_queue = asyncio.Queue() gen_tasks: List[asyncio.Task] = [] tool_start = model.container.prompt_template.metadata.tool_start disconnect_task = asyncio.create_task(request_disconnect_loop(request)) try: logger.info(f"Received chat completion streaming request {request.state.id}") for idx in range(0, data.n): task_gen_params = data.model_copy(deep=True) request_id = _parse_gen_request_id(data.n, request.state.id, idx) gen_task = asyncio.create_task( _stream_collector( idx, gen_queue, request_id, prompt, task_gen_params, abort_event, mm_embeddings=embeddings, ) ) gen_tasks.append(gen_task) # Text accumulation for tool calls current_generation_text = "" # Consumer loop while True: if disconnect_task.done(): abort_event.set() handle_request_disconnect( f"Chat completion generation {request.state.id} cancelled by user." ) generation = await gen_queue.get() # Handle options if a tool model is present if tool_start: if "stop_str" in generation: generations = await generate_tool_calls( prompt, embeddings, data, [generation], request, ) # Only one generation present in this case generation = generations[0] elif "text" in generation: current_generation_text += generation["text"] # Stream collector will push an exception to the queue if it fails if isinstance(generation, Exception): raise generation response = _create_stream_chunk( request.state.id, generation, model_path.name ) yield response.model_dump_json() # Check if all tasks are completed if all(task.done() for task in gen_tasks) and gen_queue.empty(): # Send a usage chunk if data.stream_options and data.stream_options.include_usage: usage_chunk = _create_stream_chunk( request.state.id, generation, model_path.name, is_usage_chunk=True, ) yield usage_chunk.model_dump_json() logger.info( f"Finished chat completion streaming request {request.state.id}" ) yield "[DONE]" break except CancelledError: # Get out if the request gets disconnected if not disconnect_task.done(): abort_event.set() handle_request_disconnect("Chat completion generation cancelled by user.") except Exception: yield get_generator_error( "Chat completion aborted. Please check the server console." ) async def generate_chat_completion( prompt: str, embeddings: MultimodalEmbeddingWrapper, data: ChatCompletionRequest, request: Request, model_path: pathlib.Path, ): gen_tasks: List[asyncio.Task] = [] tool_start = model.container.prompt_template.metadata.tool_start try: logger.info(f"Received chat completion request {request.state.id}") for idx in range(0, data.n): request_id = _parse_gen_request_id(data.n, request.state.id, idx) gen_tasks.append( asyncio.create_task( model.container.generate( request_id, prompt, data, mm_embeddings=embeddings, ) ) ) generations = await asyncio.gather(*gen_tasks) # Check all the generations and see if a tool call is required if tool_start: generations = await generate_tool_calls( prompt, embeddings, data, generations, request ) response = _create_response(request.state.id, generations, model_path.name) logger.info(f"Finished chat completion request {request.state.id}") return response except Exception as exc: error_message = handle_request_error( f"Chat completion {request.state.id} aborted. " "Maybe the model was unloaded? " "Please check the server console." ).error.message # Server error if there's a generation exception raise HTTPException(503, error_message) from exc async def generate_tool_calls( prompt: str, embeddings: MultimodalEmbeddingWrapper, data: ChatCompletionRequest, generations: List[str], request: Request, ): gen_tasks: List[asyncio.Task] = [] tool_start = model.container.prompt_template.metadata.tool_start # Tracks which generations asked for a tool call tool_idx: List[int] = [] # Copy to make sure the parent JSON schema doesn't get modified tool_data = data.model_copy(deep=True) tool_data.json_schema = TOOL_CALL_SCHEMA for idx, gen in enumerate(generations): if gen["stop_str"] != tool_start: continue logger.info(f"Detected tool call in chat completion request {request.state.id}") # Append the existing generation text if present precursor_text = gen.get("full_text") if precursor_text: prompt = prompt + precursor_text gen_request_id = gen.get("request_id") tool_request_id = f"{gen_request_id}-tool" gen_tasks.append( asyncio.create_task( model.container.generate( tool_request_id, prompt, tool_data, mm_embeddings=embeddings, ) ) ) tool_idx.append(idx) if len(tool_idx) > 0: tool_calls = await asyncio.gather(*gen_tasks) # Map tool calls to their appropriate generation for gen_idx, tool_call in zip(tool_idx, tool_calls, strict=True): generations[gen_idx]["tool_calls"] = tool_call["text"] return generations