* returning stop str if exists from gen
* added chat template for firefunctionv2
* pulling tool vars from template
* adding parsing for tool inputs/outputs
* passing tool data from endpoint to chat template, adding tool_start to the stop list
* loosened typing on the response tool call, leaning more on the user supplying a quality schema if they want a particular format
* non streaming generation prototype
* cleaning template
* Continued work with type, ingestion into template, and chat template for fire func
* Correction - streaming toolcall comes back as delta obj not inside chatcomprespchoice per chat_completion_chunk.py inside OAI lib.
* Ruff Formating
* Moved stop string and tool updates out of prompt creation func
Updated tool pydantic to match OAI
Support for streaming
Updated generate tool calls to use flag within chat_template and insert tool reminder
* Llama 3.1 chat templates
Updated fire func template
* renamed llama3.1 to chatml_with_headers..
* update name of template
* Support for calling a tool start token rather than the string.
Simplified tool_params
Warning when gen_settings are being overidden becuase user set temp to 0
Corrected schema and tools to correct types for function args. Str for some reason
* draft groq tool use model template
* changed headers to vars for readablity (but mostly because some models are weird about newlines after headers, so this is an easier way to change globally)
* Clean up comments and code in chat comp
* Post processed tool call to meet OAI spec rather than forcing model to write json in a string in the middle of the call.
* changes example back to args as json rather than string of json
* Standardize chat templates to each other
* cleaning/rewording
* stop elements can also be ints (tokens)
* Cleaning/formatting
* added special tokens for tools and tool_response as specified in description
* Cleaning
* removing aux templates - going to live in llm-promp-templates repo instead
* Tree: Format
Signed-off-by: kingbri <bdashore3@proton.me>
* Chat Completions: Don't include internal tool variables in OpenAPI
Use SkipJsonSchema to supress inclusion with the OpenAPI JSON. The
location of these variables may need to be changed in the future.
Signed-off-by: kingbri <bdashore3@proton.me>
* Templates: Deserialize metadata on template load
Since we're only looking for specific template variables that are
static in the template, it makes more sense to render when the template
is initialized.
Signed-off-by: kingbri <bdashore3@proton.me>
* Tools: Fix comments
Adhere to the format style of comments in the rest of the project.
Signed-off-by: kingbri <bdashore3@proton.me>
---------
Co-authored-by: Ben Gitter <gitterbd@gmail.com>
Signed-off-by: kingbri <bdashore3@proton.me>
Start scripts now don't update dependencies by default due to mishandling
caches from pip. Also add dedicated update scripts and save options
to a JSON file instead of a text one.
Signed-off-by: kingbri <bdashore3@proton.me>
There is no platform agnostic way to fetch CUDA/ROCm's versions
since environment variables change and users don't necessarily need
CUDA or ROCm installed to run pytorch (pytorch installs the necessary
libs if they don't exist).
Therefore, prompt the user for their GPU lib and store the result in
a textfile so the user doesn't need to constantly enter a preference.
Signed-off-by: kingbri <bdashore3@proton.me>
Unify API sampler params into a superclass which should make them
easier to manage and inherit generic functions from.
Not all frontends expose all sampling parameters due to connections
with OAI (that handles sampling themselves with the exception of
a few sliders).
Add the ability for the user to customize fallback parameters from
server-side.
In addition, parameters can be forced to a certain value server-side
in case the repo automatically sets other sampler values in the
background that the user doesn't want.
Signed-off-by: kingbri <bdashore3@proton.me>
* Model: Implement basic lora support
* Add ability to load loras from config on launch
* Supports loading multiple loras and lora scaling
* Add function to unload loras
* Colab: Update for basic lora support
* Model: Test vram alloc after lora load, add docs
* Git: Add loras folder to .gitignore
* API: Add basic lora-related endpoints
* Add /loras/ endpoint for querying available loras
* Add /model/lora endpoint for querying currently loaded loras
* Add /model/lora/load endpoint for loading loras
* Add /model/lora/unload endpoint for unloading loras
* Move lora config-checking logic to main.py for better compat with API endpoints
* Revert bad CRLF line ending changes
* API: Add basic lora-related endpoints (fixed)
* Add /loras/ endpoint for querying available loras
* Add /model/lora endpoint for querying currently loaded loras
* Add /model/lora/load endpoint for loading loras
* Add /model/lora/unload endpoint for unloading loras
* Move lora config-checking logic to main.py for better compat with API endpoints
* Model: Unload loras first when unloading model
* API + Models: Cleanup lora endpoints and functions
Condenses down endpoint and model load code. Also makes the routes
behave the same way as model routes to help not confuse the end user.
Signed-off-by: kingbri <bdashore3@proton.me>
* Loras: Optimize load endpoint
Return successes and failures along with consolidating the request
to the rewritten load_loras function.
Signed-off-by: kingbri <bdashore3@proton.me>
---------
Co-authored-by: kingbri <bdashore3@proton.me>
Co-authored-by: DocShotgun <126566557+DocShotgun@users.noreply.github.com>
YAML is a more flexible format when it comes to configuration. Commandline
arguments are difficult to remember and configure especially for
an API with complicated commandline names. Rather than using half-baked
textfiles, implement a proper config solution.
Also add a progress bar when loading models in the commandline.
Signed-off-by: kingbri <bdashore3@proton.me>