Model: Add EBNF grammar support

Using the Outlines library, add support to supply EBNF strings and
pass them to the library for parsing.

From there, a wrapper is created and a filter is passed to generation.

Replace with an in-house solution at some point that's more flexible.

Signed-off-by: kingbri <bdashore3@proton.me>
This commit is contained in:
kingbri 2024-02-23 01:36:10 -05:00 committed by Brian Dashore
parent 57b3d69949
commit f6d749c771
3 changed files with 119 additions and 16 deletions

View file

@ -1,8 +1,10 @@
import traceback
from common.logger import init_logger
from exllamav2 import ExLlamaV2, ExLlamaV2Tokenizer
from exllamav2.generator import ExLlamaV2Sampler
from exllamav2.generator.filters import ExLlamaV2Filter
# Temporary, remove once the exllama version is bumped
# TODO: Remove after new exllama version is released
try:
from exllamav2.generator.filters import ExLlamaV2PrefixFilter
@ -10,18 +12,54 @@ try:
except ImportError:
_exllama_filter_available = False
try:
from lmformatenforcer import JsonSchemaParser
from lmformatenforcer.integrations.exllamav2 import ExLlamaV2TokenEnforcerFilter
_lmformatenforcer_available = True
except ImportError:
_lmformatenforcer_available = False
logger = init_logger(__name__)
class OutlinesTokenizerWrapper:
"""Wrapper for Outlines tokenizer"""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
id_to_piece = self.tokenizer.get_id_to_piece_list()
self.vocabulary = {piece: idx for idx, piece in enumerate(id_to_piece)}
self.eos_token_id = self.tokenizer.eos_token_id
self.eos_token = id_to_piece[self.tokenizer.eos_token_id]
self.special_tokens = list(self.tokenizer.extended_id_to_piece.keys())
def convert_token_to_string(self, token):
return token
def decode(self, tokens):
s = ""
id_to_piece = self.tokenizer.get_id_to_piece_list()
for t in tokens:
s += id_to_piece[t]
return s
class ExLlamaV2EbnfFilter(ExLlamaV2Filter):
"""Filter class for context-free grammar via outlines"""
def __init__(self, model, tokenizer, grammar):
from outlines.fsm.fsm import CFGFSM
super().__init__(model, tokenizer)
self.wrapped_tokenizer = OutlinesTokenizerWrapper(tokenizer)
self.fsm = CFGFSM(grammar, self.wrapped_tokenizer)
self.state = self.fsm.first_state
def begin(self, prefix_str=""):
self.state = self.fsm.first_state
def feed(self, token):
self.state = self.fsm.next_state(self.state, token.item())
def next(self):
return self.fsm.allowed_token_ids(self.state), set()
class ExLlamaV2Grammar:
"""ExLlamaV2 class for various grammar filters/parsers."""
@ -34,28 +72,80 @@ class ExLlamaV2Grammar:
):
"""Adds an ExllamaV2 filter based on a JSON schema."""
# Check if the required dependencies can be imported
if not _exllama_filter_available:
logger.warning(
"ExllamaV2PrefixFilter is not available "
"in the currently installed ExllamaV2 version."
"in the currently installed ExllamaV2 version. "
"Skipping JSON schema parsing."
)
return
if not _lmformatenforcer_available:
# Import optional dependencies
try:
from lmformatenforcer import JsonSchemaParser
from lmformatenforcer.integrations.exllamav2 import (
ExLlamaV2TokenEnforcerFilter,
)
except ImportError:
logger.error(
"lmformatenforcer must be installed to parse a json schema.\n"
"Please run the following command: pip install lm-format-enforcer"
"Skipping JSON schema parsing because "
"lm-format-enforcer is not installed.\n"
"Please run the following command: "
"pip install lm-format-enforcer"
)
return
# Create the parser
schema_parser = JsonSchemaParser(json_schema)
try:
schema_parser = JsonSchemaParser(json_schema)
except Exception:
traceback.print_exc()
logger.error(
"Skipping because the JSON schema couldn't be parsed. "
"Please read the above error for more information."
)
return
lmfilter = ExLlamaV2TokenEnforcerFilter(schema_parser, tokenizer)
prefix_filter = ExLlamaV2PrefixFilter(model, tokenizer, "{")
# Append the filters
gen_settings.filters += [lmfilter, prefix_filter]
gen_settings.filters.extend([lmfilter, prefix_filter])
gen_settings.filter_prefer_eos = True
def add_ebnf_filter(
self,
ebnf_string: str,
gen_settings: ExLlamaV2Sampler.Settings,
model: ExLlamaV2,
tokenizer: ExLlamaV2Tokenizer,
):
"""
Add an EBNF grammar filter.
Possibly replace outlines with an in-house solution in the future.
"""
if not _exllama_filter_available:
logger.warning(
"filter_prefer_eos is not available "
"in the currently installed ExllamaV2 version. "
"Skipping EBNF parsing."
)
return
try:
ebnf_filter = ExLlamaV2EbnfFilter(model, tokenizer, ebnf_string)
except ImportError:
logger.error(
"Skipping EBNF parsing because Outlines is not installed.\n"
"Please run the following command: pip install outlines"
)
return
gen_settings.filters.append(ebnf_filter)
gen_settings.filter_prefer_eos = True

View file

@ -761,6 +761,7 @@ class ExllamaV2Container:
# Initialize grammar handler
grammar_handler = ExLlamaV2Grammar()
gen_settings.filters = []
# Add JSON schema filter if it exists
json_schema = unwrap(kwargs.get("json_schema"))
@ -769,6 +770,13 @@ class ExllamaV2Container:
json_schema, gen_settings, self.model, self.tokenizer
)
# Add EBNF filter if it exists
grammar_string = unwrap(kwargs.get("grammar_string"))
if grammar_string:
grammar_handler.add_ebnf_filter(
grammar_string, gen_settings, self.model, self.tokenizer
)
# Ban the EOS token if specified. If not, append to stop conditions
# as well.
# Set this below logging to avoid polluting the stop strings array

View file

@ -122,6 +122,10 @@ class BaseSamplerRequest(BaseModel):
default_factory=lambda: get_default_sampler_value("json_schema"),
)
grammar_string: Optional[str] = Field(
default_factory=lambda: get_default_sampler_value("grammar_string"),
)
# Aliased variables
typical: Optional[float] = Field(
default_factory=lambda: get_default_sampler_value("typical", 1.0),
@ -266,6 +270,7 @@ class BaseSamplerRequest(BaseModel):
"cfg_scale": self.cfg_scale,
"negative_prompt": self.negative_prompt,
"json_schema": self.json_schema,
"grammar_string": self.grammar_string,
}
return {**gen_params, **kwargs}