Merge remote-tracking branch 'upstream/main' into HEAD

This commit is contained in:
TerminalMan 2024-09-11 15:57:18 +01:00
commit e8fcecd56a
28 changed files with 386 additions and 171 deletions

View file

@ -137,7 +137,7 @@ async def get_version():
async def get_extra_version():
"""Impersonate Koboldcpp."""
return {"result": "KoboldCpp", "version": "1.61"}
return {"result": "KoboldCpp", "version": "1.71"}
@kai_router.get("/config/soft_prompts_list")

View file

@ -22,6 +22,7 @@ from endpoints.OAI.utils.chat_completion import (
)
from endpoints.OAI.utils.completion import (
generate_completion,
load_inline_model,
stream_generate_completion,
)
from endpoints.OAI.utils.embeddings import get_embeddings
@ -42,7 +43,7 @@ def setup():
# Completions endpoint
@router.post(
"/v1/completions",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
dependencies=[Depends(check_api_key)],
)
async def completion_request(
request: Request, data: CompletionRequest
@ -53,6 +54,18 @@ async def completion_request(
If stream = true, this returns an SSE stream.
"""
if data.model:
inline_load_task = asyncio.create_task(load_inline_model(data.model, request))
await run_with_request_disconnect(
request,
inline_load_task,
disconnect_message=f"Model switch for generation {request.state.id} "
+ "cancelled by user.",
)
else:
await check_model_container()
model_path = model.container.model_dir
if isinstance(data.prompt, list):
@ -85,7 +98,7 @@ async def completion_request(
# Chat completions endpoint
@router.post(
"/v1/chat/completions",
dependencies=[Depends(check_api_key), Depends(check_model_container)],
dependencies=[Depends(check_api_key)],
)
async def chat_completion_request(
request: Request, data: ChatCompletionRequest
@ -96,6 +109,11 @@ async def chat_completion_request(
If stream = true, this returns an SSE stream.
"""
if data.model:
await load_inline_model(data.model, request)
else:
await check_model_container()
if model.container.prompt_template is None:
error_message = handle_request_error(
"Chat completions are disabled because a prompt template is not set.",

View file

@ -56,6 +56,7 @@ class ChatCompletionRequest(CommonCompletionRequest):
add_generation_prompt: Optional[bool] = True
template_vars: Optional[dict] = {}
response_prefix: Optional[str] = None
model: Optional[str] = None
# tools is follows the format OAI schema, functions is more flexible
# both are available in the chat template.

View file

@ -1,4 +1,8 @@
"""Completion utilities for OAI server."""
"""
Completion utilities for OAI server.
Also serves as a common module for completions and chat completions.
"""
import asyncio
import pathlib
@ -10,12 +14,14 @@ from typing import List, Union
from loguru import logger
from common import model
from common.auth import get_key_permission
from common.networking import (
get_generator_error,
handle_request_disconnect,
handle_request_error,
request_disconnect_loop,
)
from common.tabby_config import config
from common.utils import unwrap
from endpoints.OAI.types.completion import (
CompletionRequest,
@ -103,6 +109,50 @@ async def _stream_collector(
await gen_queue.put(e)
async def load_inline_model(model_name: str, request: Request):
"""Load a model from the data.model parameter"""
# Return if the model container already exists and the model is fully loaded
if (
model.container
and model.container.model_dir.name == model_name
and model.container.model_loaded
):
return
# Inline model loading isn't enabled or the user isn't an admin
if not get_key_permission(request) == "admin":
error_message = handle_request_error(
f"Unable to switch model to {model_name} because "
+ "an admin key isn't provided",
exc_info=False,
).error.message
raise HTTPException(401, error_message)
if not unwrap(config.model.get("inline_model_loading"), False):
logger.warning(
f"Unable to switch model to {model_name} because "
'"inline_model_loading" is not True in config.yml.'
)
return
model_path = pathlib.Path(unwrap(config.model.get("model_dir"), "models"))
model_path = model_path / model_name
# Model path doesn't exist
if not model_path.exists():
logger.warning(
f"Could not find model path {str(model_path)}. Skipping inline model load."
)
return
# Load the model
await model.load_model(model_path)
async def stream_generate_completion(
data: CompletionRequest, request: Request, model_path: pathlib.Path
):

View file

@ -103,7 +103,7 @@ async def list_draft_models(request: Request) -> ModelList:
models = get_model_list(draft_model_path.resolve())
else:
models = await get_current_model_list(is_draft=True)
models = await get_current_model_list(model_type="draft")
return models
@ -441,7 +441,8 @@ async def switch_template(data: TemplateSwitchRequest):
raise HTTPException(400, error_message)
try:
model.container.prompt_template = PromptTemplate.from_file(data.name)
template_path = pathlib.Path("templates") / data.name
model.container.prompt_template = await PromptTemplate.from_file(template_path)
except FileNotFoundError as e:
error_message = handle_request_error(
f"The template name {data.name} doesn't exist. Check the spelling?",
@ -490,7 +491,7 @@ async def switch_sampler_override(data: SamplerOverrideSwitchRequest):
if data.preset:
try:
sampling.overrides_from_file(data.preset)
await sampling.overrides_from_file(data.preset)
except FileNotFoundError as e:
error_message = handle_request_error(
f"Sampler override preset with name {data.preset} does not exist. "

View file

@ -5,7 +5,8 @@ from time import time
from typing import List, Literal, Optional, Union
from common.config_models import logging_config_model
from common.model import get_config_default
from common.tabby_config import config
from common.utils import unwrap
class ModelCardParameters(BaseModel):
@ -51,23 +52,13 @@ class DraftModelLoadRequest(BaseModel):
draft_model_name: str
# Config arguments
draft_rope_scale: Optional[float] = Field(
default_factory=lambda: get_config_default(
"draft_rope_scale", model_type="draft"
)
)
draft_rope_scale: Optional[float] = None
draft_rope_alpha: Optional[Union[float, Literal["auto"]]] = Field(
description='Automatically calculated if set to "auto"',
default_factory=lambda: get_config_default(
"draft_rope_alpha", model_type="draft"
),
default=None,
examples=[1.0],
)
draft_cache_mode: Optional[str] = Field(
default_factory=lambda: get_config_default(
"draft_cache_mode", model_type="draft"
)
)
draft_cache_mode: Optional[str] = None
class ModelLoadRequest(BaseModel):
@ -78,62 +69,45 @@ class ModelLoadRequest(BaseModel):
# Config arguments
# Max seq len is fetched from config.json of the model by default
max_seq_len: Optional[int] = Field(
description="Leave this blank to use the model's base sequence length",
default_factory=lambda: get_config_default("max_seq_len"),
default=None,
examples=[4096],
)
override_base_seq_len: Optional[int] = Field(
description=(
"Overrides the model's base sequence length. " "Leave blank if unsure"
),
default_factory=lambda: get_config_default("override_base_seq_len"),
default=None,
examples=[4096],
)
cache_size: Optional[int] = Field(
description=("Number in tokens, must be greater than or equal to max_seq_len"),
default_factory=lambda: get_config_default("cache_size"),
default=None,
examples=[4096],
)
tensor_parallel: Optional[bool] = Field(
default_factory=lambda: get_config_default("tensor_parallel")
)
gpu_split_auto: Optional[bool] = Field(
default_factory=lambda: get_config_default("gpu_split_auto")
)
autosplit_reserve: Optional[List[float]] = Field(
default_factory=lambda: get_config_default("autosplit_reserve")
)
tensor_parallel: Optional[bool] = None
gpu_split_auto: Optional[bool] = None
autosplit_reserve: Optional[List[float]] = None
gpu_split: Optional[List[float]] = Field(
default_factory=lambda: get_config_default("gpu_split"),
default=None,
examples=[[24.0, 20.0]],
)
rope_scale: Optional[float] = Field(
description="Automatically pulled from the model's config if not present",
default_factory=lambda: get_config_default("rope_scale"),
default=None,
examples=[1.0],
)
rope_alpha: Optional[Union[float, Literal["auto"]]] = Field(
description='Automatically calculated if set to "auto"',
default_factory=lambda: get_config_default("rope_alpha"),
default=None,
examples=[1.0],
)
cache_mode: Optional[str] = Field(
default_factory=lambda: get_config_default("cache_mode")
)
chunk_size: Optional[int] = Field(
default_factory=lambda: get_config_default("chunk_size")
)
prompt_template: Optional[str] = Field(
default_factory=lambda: get_config_default("prompt_template")
)
num_experts_per_token: Optional[int] = Field(
default_factory=lambda: get_config_default("num_experts_per_token")
)
fasttensors: Optional[bool] = Field(
default_factory=lambda: get_config_default("fasttensors")
)
cache_mode: Optional[str] = None
chunk_size: Optional[int] = None
prompt_template: Optional[str] = None
num_experts_per_token: Optional[int] = None
fasttensors: Optional[bool] = None
# Non-config arguments
draft: Optional[DraftModelLoadRequest] = None
@ -142,9 +116,11 @@ class ModelLoadRequest(BaseModel):
class EmbeddingModelLoadRequest(BaseModel):
name: str
# Set default from the config
embeddings_device: Optional[str] = Field(
default_factory=lambda: get_config_default(
"embeddings_device", model_type="embedding"
default_factory=lambda: unwrap(
config.embeddings.get("embeddings_device"), "cpu"
)
)