API: Fix response creation

Change chat completion and text completion responses to be more
flexible.

Signed-off-by: kingbri <bdashore3@proton.me>
This commit is contained in:
kingbri 2024-02-07 23:36:08 -05:00 committed by Brian Dashore
parent 0af6a38af3
commit c02fe4d1db
4 changed files with 50 additions and 37 deletions

View file

@ -6,6 +6,16 @@ from uuid import uuid4
from OAI.types.common import UsageStats, CommonCompletionRequest
class ChatCompletionLogprobs(BaseModel):
token: str
logprob: float
top_logprobs: List["ChatCompletionLogprobs"]
class WrappedChatCompletionLogprobs(BaseModel):
content: List[ChatCompletionLogprobs]
class ChatCompletionMessage(BaseModel):
role: Optional[str] = None
content: Optional[str] = None
@ -16,6 +26,7 @@ class ChatCompletionRespChoice(BaseModel):
index: int = 0
finish_reason: str
message: ChatCompletionMessage
logprobs: Optional[WrappedChatCompletionLogprobs] = None
class ChatCompletionStreamChoice(BaseModel):
@ -23,6 +34,7 @@ class ChatCompletionStreamChoice(BaseModel):
index: int = 0
finish_reason: Optional[str]
delta: Union[ChatCompletionMessage, dict] = {}
logprobs: Optional[WrappedChatCompletionLogprobs] = None
# Inherited from common request

View file

@ -17,32 +17,35 @@ from OAI.types.completion import (
from OAI.types.common import UsageStats
def create_completion_response(**kwargs):
def create_completion_response(generation: dict, model_name: Optional[str]):
"""Create a completion response from the provided text."""
token_probs = unwrap(kwargs.get("token_probs"), {})
logprobs = unwrap(kwargs.get("logprobs"), [])
offset = unwrap(kwargs.get("offset"), [])
logprob_response = None
logprob_response = CompletionLogProbs(
text_offset=offset if isinstance(offset, list) else [offset],
token_logprobs=token_probs.values(),
tokens=token_probs.keys(),
top_logprobs=logprobs if isinstance(logprobs, list) else [logprobs],
)
token_probs = unwrap(generation.get("token_probs"), {})
if token_probs:
logprobs = unwrap(generation.get("logprobs"), [])
offset = unwrap(generation.get("offset"), [])
logprob_response = CompletionLogProbs(
text_offset=offset if isinstance(offset, list) else [offset],
token_logprobs=token_probs.values(),
tokens=token_probs.keys(),
top_logprobs=logprobs if isinstance(logprobs, list) else [logprobs],
)
choice = CompletionRespChoice(
finish_reason="Generated",
text=unwrap(kwargs.get("text"), ""),
text=unwrap(generation.get("text"), ""),
logprobs=logprob_response,
)
prompt_tokens = unwrap(kwargs.get("prompt_tokens"), 0)
completion_tokens = unwrap(kwargs.get("completion_tokens"), 0)
prompt_tokens = unwrap(generation.get("prompt_tokens"), 0)
completion_tokens = unwrap(generation.get("completion_tokens"), 0)
response = CompletionResponse(
choices=[choice],
model=unwrap(kwargs.get("model_name"), ""),
model=unwrap(model_name, ""),
usage=UsageStats(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
@ -53,17 +56,18 @@ def create_completion_response(**kwargs):
return response
def create_chat_completion_response(
text: str,
prompt_tokens: Optional[int],
completion_tokens: Optional[int],
model_name: Optional[str],
):
def create_chat_completion_response(generation: dict, model_name: Optional[str]):
"""Create a chat completion response from the provided text."""
message = ChatCompletionMessage(role="assistant", content=unwrap(text, ""))
message = ChatCompletionMessage(
role="assistant", content=unwrap(generation.get("text"), "")
)
choice = ChatCompletionRespChoice(finish_reason="Generated", message=message)
prompt_tokens = unwrap(generation.get("prompt_tokens"), 0)
completion_tokens = unwrap(generation.get("completion_tokens"), 0)
response = ChatCompletionResponse(
choices=[choice],
model=unwrap(model_name, ""),
@ -79,15 +83,18 @@ def create_chat_completion_response(
def create_chat_completion_stream_chunk(
const_id: str,
text: Optional[str] = None,
generation: Optional[dict] = None,
model_name: Optional[str] = None,
finish_reason: Optional[str] = None,
):
"""Create a chat completion stream chunk from the provided text."""
if finish_reason:
message = {}
else:
message = ChatCompletionMessage(role="assistant", content=text)
message = ChatCompletionMessage(
role="assistant", content=unwrap(generation.get("text"), "")
)
# The finish reason can be None
choice = ChatCompletionStreamChoice(finish_reason=finish_reason, delta=message)

View file

@ -505,7 +505,7 @@ class ExllamaV2Container:
generations = list(self.generate_gen(prompt, **kwargs))
joined_generation = {
"chunk": "",
"text": "",
"prompt_tokens": 0,
"generation_tokens": 0,
"offset": [],
@ -515,7 +515,7 @@ class ExllamaV2Container:
if generations:
for generation in generations:
joined_generation["chunk"] += unwrap(generation.get("chunk"), "")
joined_generation["text"] += unwrap(generation.get("text"), "")
joined_generation["offset"].append(unwrap(generation.get("offset"), []))
joined_generation["token_probs"].update(
unwrap(generation.get("token_probs"), {})
@ -835,7 +835,7 @@ class ExllamaV2Container:
elapsed > stream_interval or eos or generated_tokens == max_tokens
):
generation = {
"chunk": chunk_buffer,
"text": chunk_buffer,
"prompt_tokens": prompt_tokens,
"generated_tokens": generated_tokens,
"offset": len(full_response),

16
main.py
View file

@ -462,10 +462,7 @@ async def generate_completion(request: Request, data: CompletionRequest):
if await request.is_disconnected():
break
response = create_completion_response(
**generation,
model_name=model_path.name,
)
response = create_completion_response(generation, model_path.name)
yield get_sse_packet(response.model_dump_json())
@ -483,7 +480,7 @@ async def generate_completion(request: Request, data: CompletionRequest):
generation = await call_with_semaphore(
partial(MODEL_CONTAINER.generate, data.prompt, **data.to_gen_params())
)
response = create_completion_response(**generation)
response = create_completion_response(generation, model_path.name)
return response
@ -548,7 +545,7 @@ async def generate_chat_completion(request: Request, data: ChatCompletionRequest
break
response = create_chat_completion_stream_chunk(
const_id, generation.get("chunk"), model_path.name
const_id, generation, model_path.name
)
yield get_sse_packet(response.model_dump_json())
@ -568,13 +565,10 @@ async def generate_chat_completion(request: Request, data: ChatCompletionRequest
generate_with_semaphore(generator), media_type="text/event-stream"
)
response_text, prompt_tokens, completion_tokens = await call_with_semaphore(
generation = await call_with_semaphore(
partial(MODEL_CONTAINER.generate, prompt, **data.to_gen_params())
)
response = create_chat_completion_response(
response_text, prompt_tokens, completion_tokens, model_path.name
)
response = create_chat_completion_response(generation, model_path.name)
return response