API + Model: Apply config.yml defaults for all load paths

There are two ways to load a model:
1. Via the load endpoint
2. Inline with a completion

The defaults were not applying on the inline load, so rewrite to fix
that. However, while doing this, set up a defaults dictionary rather
than comparing it at runtime and remove the pydantic default lambda
on all the model load fields.

This makes the code cleaner and establishes a clear config tree for
loading models.

Signed-off-by: kingbri <bdashore3@proton.me>
This commit is contained in:
kingbri 2024-09-10 23:35:35 -04:00
parent 7baef05b49
commit b9e5693c1b
3 changed files with 41 additions and 67 deletions

View file

@ -13,7 +13,6 @@ from typing import Optional
from common.logger import get_loading_progress_bar
from common.networking import handle_request_error
from common.tabby_config import config
from common.utils import unwrap
from endpoints.utils import do_export_openapi
if not do_export_openapi:
@ -67,6 +66,10 @@ async def load_model_gen(model_path: pathlib.Path, **kwargs):
logger.info("Unloading existing model.")
await unload_model()
# Merge with config defaults
kwargs = {**config.model_defaults, **kwargs}
# Create a new container
container = await ExllamaV2Container.create(model_path.resolve(), False, **kwargs)
model_type = "draft" if container.draft_config else "model"
@ -149,25 +152,6 @@ async def unload_embedding_model():
embeddings_container = None
# FIXME: Maybe make this a one-time function instead of a dynamic default
def get_config_default(key: str, model_type: str = "model"):
"""Fetches a default value from model config if allowed by the user."""
default_keys = unwrap(config.model.get("use_as_default"), [])
# Add extra keys to defaults
default_keys.append("embeddings_device")
if key in default_keys:
# Is this a draft model load parameter?
if model_type == "draft":
return config.draft_model.get(key)
elif model_type == "embedding":
return config.embeddings.get(key)
else:
return config.model.get(key)
async def check_model_container():
"""FastAPI depends that checks if a model isn't loaded or currently loading."""

View file

@ -7,6 +7,9 @@ from common.utils import unwrap, merge_dicts
class TabbyConfig:
"""Common config class for TabbyAPI. Loaded into sub-dictionaries from YAML file."""
# Sub-blocks of yaml
network: dict = {}
logging: dict = {}
model: dict = {}
@ -16,6 +19,9 @@ class TabbyConfig:
developer: dict = {}
embeddings: dict = {}
# Persistent defaults
model_defaults: dict = {}
def load(self, arguments: Optional[dict] = None):
"""Synchronously loads the global application config"""
@ -36,6 +42,14 @@ class TabbyConfig:
self.developer = unwrap(merged_config.get("developer"), {})
self.embeddings = unwrap(merged_config.get("embeddings"), {})
# Set model defaults dict once to prevent on-demand reconstruction
default_keys = unwrap(self.model.get("use_as_default"), [])
for key in default_keys:
if key in self.model:
self.model_defaults[key] = config.model[key]
elif key in self.draft_model:
self.model_defaults[key] = config.draft_model[key]
def _from_file(self, config_path: pathlib.Path):
"""loads config from a given file path"""

View file

@ -5,7 +5,8 @@ from time import time
from typing import List, Literal, Optional, Union
from common.gen_logging import GenLogPreferences
from common.model import get_config_default
from common.tabby_config import config
from common.utils import unwrap
class ModelCardParameters(BaseModel):
@ -51,23 +52,13 @@ class DraftModelLoadRequest(BaseModel):
draft_model_name: str
# Config arguments
draft_rope_scale: Optional[float] = Field(
default_factory=lambda: get_config_default(
"draft_rope_scale", model_type="draft"
)
)
draft_rope_scale: Optional[float] = None
draft_rope_alpha: Optional[Union[float, Literal["auto"]]] = Field(
description='Automatically calculated if set to "auto"',
default_factory=lambda: get_config_default(
"draft_rope_alpha", model_type="draft"
),
default=None,
examples=[1.0],
)
draft_cache_mode: Optional[str] = Field(
default_factory=lambda: get_config_default(
"draft_cache_mode", model_type="draft"
)
)
draft_cache_mode: Optional[str] = None
class ModelLoadRequest(BaseModel):
@ -78,62 +69,45 @@ class ModelLoadRequest(BaseModel):
# Config arguments
# Max seq len is fetched from config.json of the model by default
max_seq_len: Optional[int] = Field(
description="Leave this blank to use the model's base sequence length",
default_factory=lambda: get_config_default("max_seq_len"),
default=None,
examples=[4096],
)
override_base_seq_len: Optional[int] = Field(
description=(
"Overrides the model's base sequence length. " "Leave blank if unsure"
),
default_factory=lambda: get_config_default("override_base_seq_len"),
default=None,
examples=[4096],
)
cache_size: Optional[int] = Field(
description=("Number in tokens, must be greater than or equal to max_seq_len"),
default_factory=lambda: get_config_default("cache_size"),
default=None,
examples=[4096],
)
tensor_parallel: Optional[bool] = Field(
default_factory=lambda: get_config_default("tensor_parallel")
)
gpu_split_auto: Optional[bool] = Field(
default_factory=lambda: get_config_default("gpu_split_auto")
)
autosplit_reserve: Optional[List[float]] = Field(
default_factory=lambda: get_config_default("autosplit_reserve")
)
tensor_parallel: Optional[bool] = None
gpu_split_auto: Optional[bool] = None
autosplit_reserve: Optional[List[float]] = None
gpu_split: Optional[List[float]] = Field(
default_factory=lambda: get_config_default("gpu_split"),
default=None,
examples=[[24.0, 20.0]],
)
rope_scale: Optional[float] = Field(
description="Automatically pulled from the model's config if not present",
default_factory=lambda: get_config_default("rope_scale"),
default=None,
examples=[1.0],
)
rope_alpha: Optional[Union[float, Literal["auto"]]] = Field(
description='Automatically calculated if set to "auto"',
default_factory=lambda: get_config_default("rope_alpha"),
default=None,
examples=[1.0],
)
cache_mode: Optional[str] = Field(
default_factory=lambda: get_config_default("cache_mode")
)
chunk_size: Optional[int] = Field(
default_factory=lambda: get_config_default("chunk_size")
)
prompt_template: Optional[str] = Field(
default_factory=lambda: get_config_default("prompt_template")
)
num_experts_per_token: Optional[int] = Field(
default_factory=lambda: get_config_default("num_experts_per_token")
)
fasttensors: Optional[bool] = Field(
default_factory=lambda: get_config_default("fasttensors")
)
cache_mode: Optional[str] = None
chunk_size: Optional[int] = None
prompt_template: Optional[str] = None
num_experts_per_token: Optional[int] = None
fasttensors: Optional[bool] = None
# Non-config arguments
draft: Optional[DraftModelLoadRequest] = None
@ -142,9 +116,11 @@ class ModelLoadRequest(BaseModel):
class EmbeddingModelLoadRequest(BaseModel):
name: str
# Set default from the config
embeddings_device: Optional[str] = Field(
default_factory=lambda: get_config_default(
"embeddings_device", model_type="embedding"
default_factory=lambda: unwrap(
config.embeddings.get("embeddings_device"), "cpu"
)
)