Model container with generator logic, initial

This commit is contained in:
turboderp 2023-11-11 02:53:00 +01:00
parent d2480bae28
commit 9d34479e3e
2 changed files with 317 additions and 0 deletions

296
model.py Normal file
View file

@ -0,0 +1,296 @@
import json, uuid, os, gc, time
import torch
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Cache_8bit,
ExLlamaV2Tokenizer,
)
from exllamav2.generator import(
ExLlamaV2StreamingGenerator,
ExLlamaV2Sampler
)
# Bytes to reserve on first device when loading with auto split
auto_split_reserve_bytes = 96 * 1024**2
class ModelContainer:
config: ExLlamaV2Config or None = None
draft_config: ExLlamaV2Config or None = None
model: ExLlamaV2 or None = None
draft_model: ExLlamaV2 or None = None
cache: ExLlamaV2Cache or None = None
draft_cache: ExLlamaV2Cache or None = None
tokenizer: ExLlamaV2Tokenizer or None = None
generator: ExLlamaV2StreamingGenerator or None = None
cache_fp8: bool = False
draft_enabled: bool = False
gpu_split_auto: bool = True
gpu_split: list or None = None
def __init__(self, model_directory: str, quiet = False, **kwargs):
"""
Create model container
Args:
model_dir (int): Model directory containing config.json, tokenizer.model etc.
quiet (bool): Suppress console output
load_progress_callback (function, optional): A function to call for each module loaded. Prototype:
def progress(loaded_modules: int, total_modules: int, loading_draft: bool)
**kwargs:
`cache_mode` (str): Sets cache mode, "FP16" or "FP8" (defaulf: "FP16")
'max_seq_len' (int): Override model's default max sequence length
'rope_scale' (float): Set RoPE scaling factor for model (default: 1.0)
'rope_alpha' (float): Set RoPE alpha (NTK) factor for model (default: 1.0)
'chunk_size' (int): Sets the maximum chunk size for the model (default: 2048)
Inferencing in chunks reduces overall VRAM overhead by processing very long sequences in smaller
batches. This limits the size of temporary buffers needed for the hidden state and attention
weights.
'draft_model_dir' (str): Draft model directory
'draft_rope_alpha' (float): RoPE alpha (NTK) factor for draft model.
By default, the draft model's alpha value is calculated automatically to scale to the size of the
full model.
'gpu_split_auto' (bool): Automatically split model across available devices (default: True)
'gpu_split' (list): Allocation for weights and (some) tensors, per device
"""
self.quiet = quiet
self.cache_fp8 = "cache_mode" in kwargs and kwargs["cache_mode"] == "FP8"
self.gpu_split_auto = kwargs.get("gpu_split_auto", True)
self.gpu_split = kwargs.get("gpu_split", None)
self.config = ExLlamaV2Config()
self.config.model_dir = model_directory
self.config.prepare()
if "max_seq_len" in kwargs: self.config.max_seq_len = kwargs["max_seq_len"]
if "rope_scale" in kwargs: self.config.scale_pos_emb = kwargs["rope_scale"]
if "rope_alpha" in kwargs: self.config.scale_alpha_value = kwargs["rope_alpha"]
chunk_size = min(kwargs.get("chunk_size", 2048), self.config.max_seq_len)
self.config.max_input_len = chunk_size
self.config.max_attn_size = chunk_size ** 2
self.draft_enabled = "draft_model_dir" in kwargs
if self.draft_enabled:
self.draft_config = ExLlamaV2Config()
self.draft_config.model_dir = kwargs["draft_model_directory"]
self.draft_config.prepare()
self.draft_config.max_seq_len = self.config.max_seq_len
if "draft_rope_alpha" in kwargs:
self.draft_config.scale_alpha_value = kwargs["draft_rope_alpha"]
else:
ratio = self.config.max_seq_len / self.draft_config.max_seq_len
alpha = -0.13436 + 0.80541 * ratio + 0.28833 * ratio ** 2
self.draft_config.scale_alpha_value = alpha
if "chunk_size" in kwargs:
self.draft_config.max_input_len = kwargs["chunk_size"]
self.draft_config.max_attn_size = kwargs["chunk_size"] ** 2
def load(self, progress_callback = None):
"""
Load model
Args:
progress_callback (function, optional): A function to call for each module loaded. Prototype:
def progress(loaded_modules: int, total_modules: int)
"""
for _ in self.load_gen(progress_callback): pass
def load_gen(self, progress_callback = None):
"""
Load model, generator function
Args:
progress_callback (function, optional): A function to call for each module loaded. Prototype:
def progress(loaded_modules: int, total_modules: int)
"""
# Load tokenizer
self.tokenizer = ExLlamaV2Tokenizer(self.config)
# Load draft model
if self.draft_enabled:
self.draft_model = ExLlamaV2(self.draft_config)
if not self.quiet:
print("Loading draft model: " + self.draft_config.model_dir)
self.draft_cache = ExLlamaV2Cache(self.draft_model, lazy = True)
reserve = [auto_split_reserve_bytes] + [0] * 16
yield from self.draft_model.load_autosplit_gen(self.draft_cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
# Test VRAM allocation with a full-length forward pass
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
self.draft_model.forward(input_ids, cache = self.cache, preprocess_only = True)
# Load model
self.model = ExLlamaV2(self.config)
if not self.quiet:
print("Loading model: " + self.config.model_dir)
if not self.gpu_split_auto:
for value in self.model.load_gen(self.gpu_split, callback_gen = progress_callback):
if isinstance(value, str):
yield value
if self.cache_fp8:
self.cache = ExLlamaV2Cache_8bit(self.model, lazy = self.gpu_split_auto)
else:
self.cache = ExLlamaV2Cache(self.model, lazy = self.gpu_split_auto)
if self.gpu_split_auto:
reserve = [auto_split_reserve_bytes] + [0] * 16
yield from self.model.load_autosplit_gen(self.cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
# Test VRAM allocation with a full-length forward pass
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
self.model.forward(input_ids, cache = self.cache, preprocess_only = True)
# Create generator
self.generator = ExLlamaV2StreamingGenerator(self.model, self.cache, self.tokenizer, self.draft_model, self.draft_cache)
def unload(self):
"""
Free all VRAM resources used by this model
"""
if self.model: self.model.unload()
self.model = None
self.config = None
self.cache = None
self.tokenizer = None
gc.collect()
torch.cuda.empty_cache()
def generate(self, prompt: str, **kwargs):
gen = self.generate_gen(prompt, **kwargs)
reponse = "".join(gen)
return reponse
def generate_gen(self, prompt: str, **kwargs):
"""
Create generator function for prompt completion
Args:
prompt (str): Input prompt
**kwargs:
'token_healing' (bool): Use token healing (default: False)
'temperature' (float): Sampling temperature (default: 0.8)
'top_k' (int): Sampling top-K (default: 100)
'top_p' (float): Sampling top-P (default: 0.8)
'typical' (float): Sampling typical (default: 0.0)
'token_repetition_penalty' (float): Token repetition/presence penalty (default: 1.15)
'token_repetition_range' (int): Repetition penalty range (default: whole context)
'token_repetition_decay' (int): Repetition penalty range (default: same as range)
'stop_conditions' (list): List of stop strings/tokens to end response (default: [EOS])
'max_new_tokens' (int): Max no. tokens in response (default: 150)
'stream_interval' (float): Interval in seconds between each output chunk (default: immediate)
'generate_window' (int): Space to reserve at the end of the model's context when generating.
Rolls context window by the same amount if context length is exceeded to allow generating past
the models max_seq_len.
"""
token_healing = kwargs.get("token_healing", False)
max_new_tokens = kwargs.get("max_new_tokens", 150)
stream_interval = kwargs.get("stream_interval", 0)
generate_window = min(kwargs.get("generate_window", 512), max_new_tokens)
# Sampler settings
gen_settings = ExLlamaV2Sampler.Settings()
gen_settings.temperature = kwargs.get("temperature", 0.8)
gen_settings.top_k = kwargs.get("top_k", 100)
gen_settings.top_p = kwargs.get("top_p", 0.8)
gen_settings.typical = kwargs.get("typical", 0.0)
gen_settings.token_repetition_penalty = kwargs.get("token_repetition_penalty", 1.15)
gen_settings.token_repetition_range = kwargs.get("token_repetition_range", self.config.max_seq_len)
gen_settings.token_repetition_decay = kwargs.get("token_repetition_decay", gen_settings.token_repetition_range)
# Override sampler settings for temp = 0
if gen_settings.temperature == 0:
gen_settings.temperature = 1.0
gen_settings.top_k = 1
gen_settings.top_p = 0
gen_settings.typical = 0
# Stop conditions
self.generator.set_stop_conditions(kwargs.get("stop_conditions", [self.tokenizer.eos_token_id]))
# Tokenized context
ids = self.tokenizer.encode(prompt, encode_special_tokens = True)
# Begin
generated_tokens = 0
full_response = ""
last_chunk_time = time.time()
save_tokens = torch.empty((1, 0), dtype = torch.bool)
chunk_buffer = ""
chunk_tokens = 0
while True:
# Ingest prompt
if chunk_tokens == 0:
ids = torch.cat((ids, save_tokens), dim = - 1)
save_tokens = torch.empty((1, 0), dtype = torch.bool)
overflow = ids.shape[-1] + generate_window - self.config.max_seq_len
active_ids = ids[:, max(0, overflow):]
chunk_tokens = self.config.max_seq_len - active_ids.shape[-1]
self.generator.begin_stream(active_ids, gen_settings, token_healing = token_healing)
# Generate
chunk, eos, tokens = self.generator.stream()
if token_healing:
ids[:, -1] = self.generator.sequence_ids[:, -2] # Extract healed token
token_healing = False
save_tokens = torch.cat((save_tokens, tokens), dim=-1)
chunk_buffer += chunk
generated_tokens += 1
chunk_tokens -= 1
# Yield output
now = time.time()
elapsed = now - last_chunk_time
if chunk_buffer != "" and (elapsed > stream_interval or eos or generated_tokens == max_new_tokens):
yield chunk_buffer
full_response += chunk_buffer
chunk_buffer = ""
last_chunk_time = now
if eos or generated_tokens == max_new_tokens: break

21
model_test.py Normal file
View file

@ -0,0 +1,21 @@
from model import ModelContainer
def progress(module, modules):
print(f"Loaded {module}/{modules} modules")
yield
mc = ModelContainer("/mnt/str/models/_exl2/mistral-7b-instruct-exl2/4.0bpw/", max_seq_len = 100)
mc.load(progress)
gen = mc.generate_gen("Once upon a tim", generate_window = 16, token_healing = True)
for g in gen: print(g, end = "")
mc.unload()
del mc
mc = ModelContainer("/mnt/str/models/_exl2/mistral-7b-instruct-exl2/4.65bpw/")
mc.load(progress)
response = mc.generate("All work and no play makes turbo a derpy cat.\nAll work and no play makes turbo a derpy cat.\nAll", top_k = 1)
print (response)