API: Fix chat completion formatting flow

Previously, the flow for parsing chat completion messages and rendering
from the prompt template was disconnected between endpoints. Now, create
a common function to render and handle everything appropriately afterwards.

Signed-off-by: kingbri <bdashore3@proton.me>
This commit is contained in:
kingbri 2024-11-21 17:51:14 -05:00
parent c652a6e030
commit 902045edbb
6 changed files with 92 additions and 115 deletions

View file

@ -1,6 +1,7 @@
import asyncio
import pathlib
from sys import maxsize
from typing import Optional
from common.multimodal import MultimodalEmbeddingWrapper
from fastapi import APIRouter, Depends, HTTPException, Request, Response
from sse_starlette import EventSourceResponse
@ -14,6 +15,7 @@ from common.tabby_config import config
from common.templating import PromptTemplate, get_all_templates
from common.utils import unwrap
from common.health import HealthManager
from endpoints.OAI.utils.chat_completion import format_messages_with_template
from endpoints.core.types.auth import AuthPermissionResponse
from endpoints.core.types.download import DownloadRequest, DownloadResponse
from endpoints.core.types.lora import LoraList, LoraLoadRequest, LoraLoadResponse
@ -359,61 +361,48 @@ async def unload_embedding_model():
)
async def encode_tokens(data: TokenEncodeRequest) -> TokenEncodeResponse:
"""Encodes a string or chat completion messages into tokens."""
embeddings = MultimodalEmbeddingWrapper()
mm_embeddings: Optional[MultimodalEmbeddingWrapper] = None
if isinstance(data.text, str):
text = data.text
elif isinstance(data.text, list) and "oai" in config.network.api_servers:
# TODO: Support additional chat completion args for encode
# i.e. add_generation_prompt, template selection, tool args, template kwargs
if model.container.prompt_template is None:
elif isinstance(data.text, list):
if "oai" not in config.network.api_servers:
error_message = handle_request_error(
"Tokenization of chat completion requests is disabled "
"because a prompt template is not set.",
"Enable the OAI server to handle chat completion messages.",
exc_info=False,
).error.message
raise HTTPException(422, error_message)
from endpoints.OAI.utils.chat_completion import preprocess_vision_request
if not model.container.prompt_template:
error_message = handle_request_error(
"Cannot tokenize chat completion message because "
+ "a prompt template is not set.",
exc_info=False,
).error.message
if model.container.use_vision:
data.text, embeddings = await preprocess_vision_request(data.text)
# Keeping behavior consistent with format_prompt_with_template
# Deal with list in messages.content
# Just replace the content list with the very first text message
for message in data.text:
if isinstance(message["content"], list):
message["content"] = next(
(
content["text"]
for content in message["content"]
if content["type"] == "text"
),
"",
)
special_tokens_dict = model.container.get_special_tokens(
unwrap(data.add_bos_token, True)
)
raise HTTPException(422, error_message)
template_vars = {
"messages": data.text,
"add_generation_prompt": False,
**special_tokens_dict,
}
text = await model.container.prompt_template.render(template_vars)
# Don't need template vars again
text, mm_embeddings, _ = await format_messages_with_template(
data.text, template_vars, data.add_bos_token
)
else:
error_message = handle_request_error(
"OAI API server must be enabled to handle chat completion message inputs.",
"Unable to tokenize the provided text. Check your formatting?",
exc_info=False,
).error.message
raise HTTPException(422, error_message)
raw_tokens = model.container.encode_tokens(text, embeddings, **data.get_params())
raw_tokens = model.container.encode_tokens(
text, embeddings=mm_embeddings, **data.get_params()
)
tokens = unwrap(raw_tokens, [])
response = TokenEncodeResponse(tokens=tokens, length=len(tokens))

View file

@ -1,7 +1,9 @@
"""Tokenization types"""
from pydantic import BaseModel
from typing import Dict, List, Union
from typing import List, Union
from endpoints.OAI.types.chat_completion import ChatCompletionMessage
class CommonTokenRequest(BaseModel):
@ -23,7 +25,7 @@ class CommonTokenRequest(BaseModel):
class TokenEncodeRequest(CommonTokenRequest):
"""Represents a tokenization request."""
text: Union[str, List[Dict]]
text: Union[str, List[ChatCompletionMessage]]
class TokenEncodeResponse(BaseModel):