Tree: Update config_sample
Uses the new YAML generator. Signed-off-by: kingbri <bdashore3@proton.me>
This commit is contained in:
parent
63f8c46a92
commit
7fe0dbd62f
1 changed files with 148 additions and 164 deletions
|
|
@ -1,5 +1,6 @@
|
|||
# Sample YAML file for configuration.
|
||||
# Comment and uncomment values as needed. Every value has a default within the application.
|
||||
# Comment and uncomment values as needed.
|
||||
# Every value has a default within the application.
|
||||
# This file serves to be a drop in for config.yml
|
||||
|
||||
# Unless specified in the comments, DO NOT put these options in quotes!
|
||||
|
|
@ -8,225 +9,208 @@
|
|||
# Options for networking
|
||||
network:
|
||||
# The IP to host on (default: 127.0.0.1).
|
||||
# Use 0.0.0.0 to expose on all network adapters
|
||||
# Use 0.0.0.0 to expose on all network adapters.
|
||||
host: 127.0.0.1
|
||||
|
||||
# The port to host on (default: 5000)
|
||||
# The port to host on (default: 5000).
|
||||
port: 5000
|
||||
|
||||
# Disable HTTP token authenticaion with requests
|
||||
# Disable HTTP token authentication with requests.
|
||||
# WARNING: This will make your instance vulnerable!
|
||||
# Turn on this option if you are ONLY connecting from localhost
|
||||
# Turn on this option if you are ONLY connecting from localhost.
|
||||
disable_auth: False
|
||||
|
||||
# Send tracebacks over the API to clients (default: False)
|
||||
# NOTE: Only enable this for debug purposes
|
||||
# Send tracebacks over the API (default: False).
|
||||
# NOTE: Only enable this for debug purposes.
|
||||
send_tracebacks: False
|
||||
|
||||
# Select API servers to enable (default: ["OAI"])
|
||||
# Possible values: OAI
|
||||
api_servers: ["OAI"]
|
||||
# Select API servers to enable (default: ["OAI"]).
|
||||
# Possible values: OAI, Kobold.
|
||||
api_servers: []
|
||||
|
||||
# Options for logging
|
||||
logging:
|
||||
# Enable prompt logging (default: False)
|
||||
prompt: False
|
||||
# Enable prompt logging (default: False).
|
||||
log_prompt: False
|
||||
|
||||
# Enable generation parameter logging (default: False)
|
||||
generation_params: False
|
||||
# Enable generation parameter logging (default: False).
|
||||
log_generation_params: False
|
||||
|
||||
# Enable request logging (default: False)
|
||||
# Enable request logging (default: False).
|
||||
# NOTE: Only use this for debugging!
|
||||
requests: False
|
||||
|
||||
# Options for sampling
|
||||
sampling:
|
||||
# Override preset name. Find this in the sampler-overrides folder (default: None)
|
||||
# This overrides default fallbacks for sampler values that are passed to the API
|
||||
# Server-side overrides are NOT needed by default
|
||||
# WARNING: Using this can result in a generation speed penalty
|
||||
#override_preset:
|
||||
|
||||
# Options for development and experimentation
|
||||
developer:
|
||||
# Skips exllamav2 version check (default: False)
|
||||
# It's highly recommended to update your dependencies rather than enabling this flag
|
||||
# WARNING: Don't set this unless you know what you're doing!
|
||||
#unsafe_launch: False
|
||||
|
||||
# Disable all request streaming (default: False)
|
||||
# A kill switch for turning off SSE in the API server
|
||||
#disable_request_streaming: False
|
||||
|
||||
# Enable the torch CUDA malloc backend (default: False)
|
||||
# This can save a few MBs of VRAM, but has a risk of errors. Use at your own risk.
|
||||
#cuda_malloc_backend: False
|
||||
|
||||
# Enable Uvloop or Winloop (default: False)
|
||||
# Make the program utilize a faster async event loop which can improve performance
|
||||
# NOTE: It's recommended to enable this, but if something breaks, turn this off.
|
||||
#uvloop: False
|
||||
|
||||
# Set process to use a higher priority
|
||||
# For realtime process priority, run as administrator or sudo
|
||||
# Otherwise, the priority will be set to high
|
||||
#realtime_process_priority: False
|
||||
log_requests: False
|
||||
|
||||
# Options for model overrides and loading
|
||||
# Please read the comments to understand how arguments are handled between initial and API loads
|
||||
# Please read the comments to understand how arguments are handled
|
||||
# between initial and API loads
|
||||
model:
|
||||
# Overrides the directory to look for models (default: models)
|
||||
# Windows users, DO NOT put this path in quotes! This directory will be invalid otherwise.
|
||||
# Directory to look for models (default: models).
|
||||
# Windows users, do NOT put this path in quotes!
|
||||
model_dir: models
|
||||
|
||||
# Sends dummy model names when the models endpoint is queried
|
||||
# Enable this if the program is looking for a specific OAI model
|
||||
#use_dummy_models: False
|
||||
|
||||
# Allow direct loading of models from a completion or chat completion request
|
||||
# Allow direct loading of models from a completion or chat completion request (default: False).
|
||||
inline_model_loading: False
|
||||
|
||||
# An initial model to load. Make sure the model is located in the model directory!
|
||||
# A model can be loaded later via the API.
|
||||
# REQUIRED: This must be filled out to load a model on startup!
|
||||
model_name:
|
||||
# Sends dummy model names when the models endpoint is queried.
|
||||
# Enable this if the client is looking for specific OAI models.
|
||||
use_dummy_models: False
|
||||
|
||||
# The below parameters only apply for initial loads
|
||||
# All API based loads do NOT inherit these settings unless specified in use_as_default
|
||||
# An initial model to load.
|
||||
# Make sure the model is located in the model directory!
|
||||
# REQUIRED: This must be filled out to load a model on startup.
|
||||
model_name:
|
||||
|
||||
# Names of args to use as a default fallback for API load requests (default: [])
|
||||
# For example, if you always want cache_mode to be Q4 instead of on the inital model load,
|
||||
# Add "cache_mode" to this array
|
||||
# Ex. ["max_seq_len", "cache_mode"]
|
||||
#use_as_default: []
|
||||
# Names of args to use as a fallback for API load requests (default: []).
|
||||
# For example, if you always want cache_mode to be Q4 instead of on the inital model load, add "cache_mode" to this array.
|
||||
# Example: ['max_seq_len', 'cache_mode'].
|
||||
use_as_default: []
|
||||
|
||||
# The below parameters apply only if model_name is set
|
||||
# Max sequence length (default: Empty).
|
||||
# Fetched from the model's base sequence length in config.json by default.
|
||||
max_seq_len:
|
||||
|
||||
# Max sequence length (default: Empty)
|
||||
# Fetched from the model's base sequence length in config.json by default
|
||||
#max_seq_len:
|
||||
|
||||
# Overrides base model context length (default: Empty)
|
||||
# Overrides base model context length (default: Empty).
|
||||
# WARNING: Don't set this unless you know what you're doing!
|
||||
# Again, do NOT use this for configuring context length, use max_seq_len above ^
|
||||
# Only use this if the model's base sequence length in config.json is incorrect (ex. Mistral 7B)
|
||||
#override_base_seq_len:
|
||||
override_base_seq_len:
|
||||
|
||||
# Load model with tensor parallelism
|
||||
# If a GPU split isn't provided, the TP loader will fallback to autosplit
|
||||
# Enabling ignores the gpu_split_auto and autosplit_reserve values
|
||||
#tensor_parallel: False
|
||||
# Load model with tensor parallelism.
|
||||
# Falls back to autosplit if GPU split isn't provided.
|
||||
# This ignores the gpu_split_auto value.
|
||||
tensor_parallel: False
|
||||
|
||||
# Automatically allocate resources to GPUs (default: True)
|
||||
# NOTE: Not parsed for single GPU users
|
||||
#gpu_split_auto: True
|
||||
# Automatically allocate resources to GPUs (default: True).
|
||||
# Not parsed for single GPU users.
|
||||
gpu_split_auto: True
|
||||
|
||||
# Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0)
|
||||
# This is represented as an array of MB per GPU used
|
||||
#autosplit_reserve: [96]
|
||||
# Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0).
|
||||
# Represented as an array of MB per GPU.
|
||||
autosplit_reserve: [96]
|
||||
|
||||
# An integer array of GBs of vram to split between GPUs (default: [])
|
||||
# Used with tensor parallelism
|
||||
# NOTE: Not parsed for single GPU users
|
||||
#gpu_split: [20.6, 24]
|
||||
# An integer array of GBs of VRAM to split between GPUs (default: []).
|
||||
# Used with tensor parallelism.
|
||||
gpu_split: []
|
||||
|
||||
# Rope scale (default: 1.0)
|
||||
# Same thing as compress_pos_emb
|
||||
# Only use if your model was trained on long context with rope (check config.json)
|
||||
# Leave blank to pull the value from the model
|
||||
#rope_scale: 1.0
|
||||
# Rope scale (default: 1.0).
|
||||
# Same as compress_pos_emb.
|
||||
# Use if the model was trained on long context with rope.
|
||||
# Leave blank to pull the value from the model.
|
||||
rope_scale: 1.0
|
||||
|
||||
# Rope alpha (default: 1.0)
|
||||
# Same thing as alpha_value
|
||||
# Set to "auto" to automatically calculate
|
||||
# Leave blank to pull the value from the model
|
||||
#rope_alpha: 1.0
|
||||
# Rope alpha (default: 1.0).
|
||||
# Same as alpha_value. Set to "auto" to auto-calculate.
|
||||
rope_alpha: 1.0
|
||||
|
||||
# Enable different cache modes for VRAM savings (slight performance hit).
|
||||
# Possible values FP16, Q8, Q6, Q4. (default: FP16)
|
||||
#cache_mode: FP16
|
||||
# Enable different cache modes for VRAM savings (default: FP16).
|
||||
# Possible values: 'FP16', 'Q8', 'Q6', 'Q4'.
|
||||
cache_mode: FP16
|
||||
|
||||
# Size of the prompt cache to allocate (default: max_seq_len)
|
||||
# This must be a multiple of 256. A larger cache uses more VRAM, but allows for more prompts to be processed at once.
|
||||
# NOTE: Cache size should not be less than max_seq_len.
|
||||
# For CFG, set this to 2 * max_seq_len to make room for both positive and negative prompts.
|
||||
#cache_size:
|
||||
# Size of the prompt cache to allocate (default: max_seq_len).
|
||||
# Must be a multiple of 256 and can't be less than max_seq_len.
|
||||
# For CFG, set this to 2 * max_seq_len.
|
||||
cache_size:
|
||||
|
||||
# Chunk size for prompt ingestion. A lower value reduces VRAM usage at the cost of ingestion speed (default: 2048)
|
||||
# NOTE: Effects vary depending on the model. An ideal value is between 512 and 4096
|
||||
#chunk_size: 2048
|
||||
# Chunk size for prompt ingestion (default: 2048).
|
||||
# A lower value reduces VRAM usage but decreases ingestion speed.
|
||||
# NOTE: Effects vary depending on the model.
|
||||
# An ideal value is between 512 and 4096.
|
||||
chunk_size: 2048
|
||||
|
||||
# Set the maximum amount of prompts to process at one time (default: None/Automatic)
|
||||
# This will be automatically calculated if left blank.
|
||||
# A max batch size of 1 processes prompts one at a time.
|
||||
# NOTE: Only available for Nvidia ampere (30 series) and above GPUs
|
||||
#max_batch_size:
|
||||
# Set the maximum number of prompts to process at one time (default: None/Automatic).
|
||||
# Automatically calculated if left blank.
|
||||
# NOTE: Only available for Nvidia ampere (30 series) and above GPUs.
|
||||
max_batch_size:
|
||||
|
||||
# Set the prompt template for this model. If empty, attempts to look for the model's chat template. (default: None)
|
||||
# If a model contains multiple templates in its tokenizer_config.json, set prompt_template to the name
|
||||
# of the template you want to use.
|
||||
# Set the prompt template for this model. (default: None)
|
||||
# If empty, attempts to look for the model's chat template.
|
||||
# If a model contains multiple templates in its tokenizer_config.json,
|
||||
# set prompt_template to the name of the template you want to use.
|
||||
# NOTE: Only works with chat completion message lists!
|
||||
#prompt_template:
|
||||
prompt_template:
|
||||
|
||||
# Number of experts to use PER TOKEN. Fetched from the model's config.json if not specified (default: Empty)
|
||||
# Number of experts to use per token.
|
||||
# Fetched from the model's config.json if empty.
|
||||
# NOTE: For MoE models only.
|
||||
# WARNING: Don't set this unless you know what you're doing!
|
||||
# NOTE: For MoE models (ex. Mixtral) only!
|
||||
#num_experts_per_token:
|
||||
num_experts_per_token:
|
||||
|
||||
# Enables fasttensors to possibly increase model loading speeds (default: False)
|
||||
#fasttensors: true
|
||||
# Enables fasttensors to possibly increase model loading speeds (default: False).
|
||||
fasttensors: False
|
||||
|
||||
# Options for draft models (speculative decoding). This will use more VRAM!
|
||||
#draft:
|
||||
# Overrides the directory to look for draft (default: models)
|
||||
#draft_model_dir: models
|
||||
# Options for draft models (speculative decoding)
|
||||
# This will use more VRAM!
|
||||
draft_model:
|
||||
# Directory to look for draft models (default: models)
|
||||
draft_model_dir: models
|
||||
|
||||
# An initial draft model to load. Make sure this model is located in the model directory!
|
||||
# A draft model can be loaded later via the API.
|
||||
#draft_model_name: A model name
|
||||
|
||||
# The below parameters only apply for initial loads
|
||||
# All API based loads do NOT inherit these settings unless specified in use_as_default
|
||||
# An initial draft model to load.
|
||||
# Ensure the model is in the model directory.
|
||||
draft_model_name:
|
||||
|
||||
# Rope scale for draft models (default: 1.0)
|
||||
# Same thing as compress_pos_emb
|
||||
# Only use if your draft model was trained on long context with rope (check config.json)
|
||||
#draft_rope_scale: 1.0
|
||||
# Rope scale for draft models (default: 1.0).
|
||||
# Same as compress_pos_emb.
|
||||
# Use if the draft model was trained on long context with rope.
|
||||
draft_rope_scale: 1.0
|
||||
|
||||
# Rope alpha for draft model (default: 1.0)
|
||||
# Same thing as alpha_value
|
||||
# Leave blank to automatically calculate alpha value
|
||||
#draft_rope_alpha: 1.0
|
||||
# Rope alpha for draft models (default: None).
|
||||
# Same as alpha_value. Set to "auto" to auto-calculate.
|
||||
draft_rope_alpha:
|
||||
|
||||
# Enable different draft model cache modes for VRAM savings (slight performance hit).
|
||||
# Possible values FP16, Q8, Q6, Q4. (default: FP16)
|
||||
#draft_cache_mode: FP16
|
||||
|
||||
# Options for loras
|
||||
#lora:
|
||||
# Overrides the directory to look for loras (default: loras)
|
||||
#lora_dir: loras
|
||||
|
||||
# List of loras to load and associated scaling factors (default: 1.0). Comment out unused entries or add more rows as needed.
|
||||
#loras:
|
||||
#- name: lora1
|
||||
# scaling: 1.0
|
||||
# Cache mode for draft models to save VRAM (default: FP16).
|
||||
# Possible values: 'FP16', 'Q8', 'Q6', 'Q4'.
|
||||
draft_cache_mode: FP16
|
||||
|
||||
# Options for Loras
|
||||
lora:
|
||||
# Directory to look for LoRAs (default: loras).
|
||||
lora_dir: loras
|
||||
|
||||
# List of LoRAs to load and associated scaling factors (default scale: 1.0).
|
||||
# For the YAML file, add each entry as a YAML list:
|
||||
# - name: lora1
|
||||
# scaling: 1.0
|
||||
loras:
|
||||
|
||||
# Options for embedding models and loading.
|
||||
# NOTE: Embeddings requires the "extras" feature to be installed
|
||||
# Install it via "pip install .[extras]"
|
||||
embeddings:
|
||||
# Overrides directory to look for embedding models (default: models)
|
||||
# Directory to look for embedding models (default: models).
|
||||
embedding_model_dir: models
|
||||
|
||||
# Device to load embedding models on (default: cpu)
|
||||
# Possible values: cpu, auto, cuda
|
||||
# Device to load embedding models on (default: cpu).
|
||||
# Possible values: cpu, auto, cuda.
|
||||
# NOTE: It's recommended to load embedding models on the CPU.
|
||||
# If you'd like to load on an AMD gpu, set this value to "cuda" as well.
|
||||
# If using an AMD GPU, set this value to 'cuda'.
|
||||
embeddings_device: cpu
|
||||
|
||||
# The below parameters only apply for initial loads
|
||||
# All API based loads do NOT inherit these settings unless specified in use_as_default
|
||||
# An initial embedding model to load on the infinity backend.
|
||||
embedding_model_name:
|
||||
|
||||
# An initial embedding model to load on the infinity backend (default: None)
|
||||
embedding_model_name:
|
||||
# Options for Sampling
|
||||
sampling:
|
||||
# Select a sampler override preset (default: None).
|
||||
# Find this in the sampler-overrides folder.
|
||||
# This overrides default fallbacks for sampler values that are passed to the API.
|
||||
override_preset:
|
||||
|
||||
# Options for development and experimentation
|
||||
developer:
|
||||
# Skip Exllamav2 version check (default: False).
|
||||
# WARNING: It's highly recommended to update your dependencies rather than enabling this flag.
|
||||
unsafe_launch: False
|
||||
|
||||
# Disable API request streaming (default: False).
|
||||
disable_request_streaming: False
|
||||
|
||||
# Enable the torch CUDA malloc backend (default: False).
|
||||
cuda_malloc_backend: False
|
||||
|
||||
# Run asyncio using Uvloop or Winloop which can improve performance.
|
||||
# NOTE: It's recommended to enable this, but if something breaks turn this off.
|
||||
uvloop: False
|
||||
|
||||
# Set process to use a higher priority.
|
||||
# For realtime process priority, run as administrator or sudo.
|
||||
# Otherwise, the priority will be set to high.
|
||||
realtime_process_priority: False
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue