Merge pull request #264 from DocShotgun/robust-length-checking

Robust request length checking in generator
This commit is contained in:
Brian 2024-12-26 23:37:53 -05:00 committed by GitHub
commit 709493837b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -1307,17 +1307,49 @@ class ExllamaV2Container:
# The first index will always be the positive prompt
context_len = input_ids[0].size(dim=-1)
if context_len > self.config.max_seq_len:
raise ValueError(
f"Context length {context_len} is greater than max_seq_len "
f"{self.config.max_seq_len}"
)
# The second index will be the negative prompt if CFG is enabled
negative_context_len = input_ids[1].size(dim=-1) if negative_prompt else 0
# Automatically set max_tokens to fill up the context
# This should be an OK default, but may be changed in the future
max_tokens = unwrap(
kwargs.get("max_tokens"), self.config.max_seq_len - context_len
kwargs.get("max_tokens"),
self.config.max_seq_len - max(context_len, negative_context_len),
)
if max_tokens < 1:
logger.warning("max_tokens must be a positive integer, setting to 1.")
max_tokens = 1
# Determine if the negative context or the context length is bigger
context_to_check = max(negative_context_len, context_len)
# Check highest possible total length of request
if context_to_check + max_tokens > self.config.max_seq_len:
preamble = (
"Negative prompt request"
if negative_context_len > context_len
else "Request"
)
raise ValueError(
f"{preamble} length {context_to_check} + {max_tokens} is greater than "
f"max_seq_len {self.config.max_seq_len}"
)
# Check total required pages for CFG request to avoid overallocation
if negative_prompt and (
sum(
256 * math.ceil((context + max_tokens) / 256)
for context in (context_len, negative_context_len)
)
> self.cache_size
):
raise ValueError(
f"Total required page size for request "
f"{context_len} + {negative_context_len} + {max_tokens} * 2 "
f"is greater than cache_size {self.cache_size}"
)
# Set min_tokens to generate while keeping EOS banned
min_tokens = unwrap(kwargs.get("min_tokens"), 0)