Model: Add TokenizerConfig stub and add_eos_token fallback
This stub fetches the add_eos_token field from the HF tokenizer config. Ideally, this should be in the backend rather than tabby. Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
This commit is contained in:
parent
aa657fa6e9
commit
47cb2a0de9
3 changed files with 46 additions and 3 deletions
|
|
@ -50,7 +50,7 @@ from common.health import HealthManager
|
|||
from common.multimodal import MultimodalEmbeddingWrapper
|
||||
from common.sampling import BaseSamplerRequest
|
||||
from common.templating import PromptTemplate, find_prompt_template
|
||||
from common.transformers_utils import GenerationConfig
|
||||
from common.transformers_utils import GenerationConfig, TokenizerConfig
|
||||
from common.utils import calculate_rope_alpha, coalesce, unwrap
|
||||
from endpoints.core.types.model import ModelCard, ModelCardParameters
|
||||
|
||||
|
|
@ -80,6 +80,7 @@ class ExllamaV2Container(BaseModelContainer):
|
|||
draft_cache_mode: str = "FP16"
|
||||
max_batch_size: Optional[int] = None
|
||||
generation_config: Optional[GenerationConfig] = None
|
||||
tokenizer_config: Optional[TokenizerConfig] = None
|
||||
|
||||
# GPU split vars
|
||||
gpu_split: List[float] = []
|
||||
|
|
@ -130,7 +131,7 @@ class ExllamaV2Container(BaseModelContainer):
|
|||
if generation_config_path.exists():
|
||||
try:
|
||||
self.generation_config = await GenerationConfig.from_file(
|
||||
generation_config_path.parent
|
||||
model_directory
|
||||
)
|
||||
except Exception:
|
||||
logger.error(traceback.format_exc())
|
||||
|
|
@ -138,6 +139,19 @@ class ExllamaV2Container(BaseModelContainer):
|
|||
"Skipping generation config load because of an unexpected error."
|
||||
)
|
||||
|
||||
# Load tokenizer config overrides
|
||||
tokenizer_config_path = model_directory / "tokenizer_config.json"
|
||||
if tokenizer_config_path.exists():
|
||||
try:
|
||||
self.tokenizer_config = await TokenizerConfig.from_file(
|
||||
model_directory
|
||||
)
|
||||
except Exception:
|
||||
logger.error(traceback.format_exc())
|
||||
logger.warning(
|
||||
"Skipping tokenizer config load because of an unexpected error."
|
||||
)
|
||||
|
||||
# Set vision state and error if vision isn't supported on the current model
|
||||
self.use_vision = unwrap(kwargs.get("vision"), False)
|
||||
if self.use_vision and not self.config.vision_model_type:
|
||||
|
|
@ -1240,9 +1254,17 @@ class ExllamaV2Container(BaseModelContainer):
|
|||
) and gen_settings.token_repetition_range == -1
|
||||
|
||||
stop_conditions = params.stop
|
||||
add_bos_token = unwrap(params.add_bos_token, True)
|
||||
ban_eos_token = params.ban_eos_token
|
||||
|
||||
|
||||
print(self.tokenizer_config.add_bos_token)
|
||||
# Set add_bos_token for generation
|
||||
add_bos_token = coalesce(
|
||||
params.add_bos_token, self.tokenizer_config.add_bos_token, True
|
||||
)
|
||||
|
||||
print(add_bos_token)
|
||||
|
||||
# Fetch EOS tokens from generation_config if they exist
|
||||
eos_tokens = (
|
||||
self.generation_config.eos_tokens()
|
||||
|
|
|
|||
|
|
@ -239,6 +239,7 @@ async def find_prompt_template(template_name, model_dir: pathlib.Path):
|
|||
]
|
||||
|
||||
# Add lookup from prompt template name if provided
|
||||
# TODO: Possibly link to the TokenizerConfig class
|
||||
if template_name:
|
||||
find_template_functions[:0] = [
|
||||
lambda: PromptTemplate.from_file(pathlib.Path("templates") / template_name),
|
||||
|
|
|
|||
|
|
@ -53,3 +53,23 @@ class HuggingFaceConfig(BaseModel):
|
|||
contents = await hf_config_json.read()
|
||||
hf_config_dict = json.loads(contents)
|
||||
return cls.model_validate(hf_config_dict)
|
||||
|
||||
|
||||
class TokenizerConfig(BaseModel):
|
||||
"""
|
||||
An abridged version of HuggingFace's tokenizer config.
|
||||
"""
|
||||
|
||||
add_bos_token: Optional[bool] = None
|
||||
|
||||
@classmethod
|
||||
async def from_file(cls, model_directory: pathlib.Path):
|
||||
"""Create an instance from a tokenizer config file."""
|
||||
|
||||
tokenizer_config_path = model_directory / "tokenizer_config.json"
|
||||
async with aiofiles.open(
|
||||
tokenizer_config_path, "r", encoding="utf8"
|
||||
) as tokenizer_config_json:
|
||||
contents = await tokenizer_config_json.read()
|
||||
tokenizer_config_dict = json.loads(contents)
|
||||
return cls.model_validate(tokenizer_config_dict)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue