Support more common tool variables in templates (tools, message.tool_calls) (#308)

* Add non-JSON version of `tools` and `functions` to `template_vars`.

Increase the compatibility with VLLM templates which use a non-JSON tools object.

* Add list of tool template variables to the documentation

* Use Jinja templates to provide `tools_json` and `functions_json`

This should be functionally equivelant, but the JSON won't be produced
unless it's needed.

* Make message.tool_calls match the JSON from ToolCallProcessor

* Log something when generating tool calls

* Add template for Qwen QwQ 32b

* Only log if tool calls have been detected

* API: Fix tool call variable assignments

Jinja functions do not run when variables are called. Use json.dumps
instead. In addition, log the request ID when stating that a tool
call was fired.

Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>

* Add `ToolCallProcessor.dump()` to get the list of processed dicts

* Remove qwen_qwq_32b.jinja

This will be added to the following repository at a later date:
https://github.com/theroyallab/llm-prompt-templates

---------

Signed-off-by: kingbri <8082010+kingbri1@users.noreply.github.com>
Co-authored-by: kingbri <8082010+kingbri1@users.noreply.github.com>
This commit is contained in:
Andrew Phillips 2025-03-23 14:23:00 -03:00 committed by GitHub
parent ccf23243c1
commit 436ce752da
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 44 additions and 10 deletions

View file

@ -37,6 +37,11 @@ For example, if you are using a Llama 3.1 Family model you can simply modify you
If loading via `/v1/model/load`, you would also need to specify a tool-supporting `prompt_template`.
## Tool Template Variables
- `tools`: Tools object.
- `tools_json`: Tools object as a JSON string.
## Creating a Tool Calling Prompt Template
Here's how to create a TabbyAPI tool calling prompt template:
@ -142,4 +147,4 @@ When creating your own tool calling `prompt_template`, it's best to reference th
## Support and Bug Reporting
For bugs, please create a detailed issue with the model, prompt template, and conversation that caused it. Alternatively, join our [Discord](https://discord.gg/sYQxnuD7Fj) and ask for Storm.
For bugs, please create a detailed issue with the model, prompt template, and conversation that caused it. Alternatively, join our [Discord](https://discord.gg/sYQxnuD7Fj) and ask for Storm.

View file

@ -234,6 +234,10 @@ async def format_messages_with_template(
if message.tool_calls:
message.tool_calls_json = ToolCallProcessor.to_json(message.tool_calls)
# The tools variable is inspectable in the template, so
# store the list of dicts rather than the ToolCallProcessor object.
message.tool_calls = ToolCallProcessor.dump(message.tool_calls)
special_tokens_dict = model.container.get_special_tokens(
add_bos_token, ban_eos_token
)
@ -252,11 +256,16 @@ async def apply_chat_template(
Template stop strings can be overriden by sampler overrides if force is true.
"""
# Locally store tools dict
tools = data.model_dump()["tools"]
try:
data.template_vars.update(
{
"add_generation_prompt": data.add_generation_prompt,
"tools_json": json.dumps(data.model_dump()["tools"], indent=2),
"tools": tools,
"tools_json": json.dumps(tools, indent=2),
"functions": data.functions,
"functions_json": json.dumps(data.functions, indent=2),
"tool_precursor": tool_precursor,
}
@ -460,6 +469,10 @@ async def generate_tool_calls(
for idx, gen in enumerate(generations):
if gen["stop_str"] in tool_data.tool_call_start:
logger.info(
f"Detected tool call in chat completion request {request.state.id}"
)
if "text" in gen:
# non streaming, all generations will have the text they generated
pre_tool_prompt, mm_embeddings = await apply_chat_template(

View file

@ -18,6 +18,28 @@ class ToolCallProcessor:
return [ToolCall(**tool_call) for tool_call in tool_calls]
@staticmethod
def dump(tool_calls: List[ToolCall]) -> List[dict]:
"""
Convert ToolCall objects to a list of dictionaries.
Args:
tool_calls (List[ToolCall]): List of ToolCall objects to convert
Returns:
List[dict]: List of dictionaries representing the tool calls
"""
# Don't use list comprehension here
# as that will fail rather than warn
dumped_tool_calls = []
for tool_call_obj in tool_calls:
try:
dumped_tool_calls.append(tool_call_obj.model_dump())
except (json.JSONDecodeError, AttributeError) as e:
logger.warning(f"Error processing tool call: {e}")
return dumped_tool_calls
@staticmethod
def to_json(tool_calls: List[ToolCall]) -> str:
"""
@ -33,14 +55,8 @@ class ToolCallProcessor:
if not tool_calls:
return ""
# Don't use list comprehension here
# as that will fail rather than warn
dumped_tool_calls = []
for tool_call_obj in tool_calls:
try:
dumped_tool_calls.append(tool_call_obj.model_dump())
except (json.JSONDecodeError, AttributeError) as e:
logger.warning(f"Error processing tool call: {e}")
# Use the dump method to get the list of dictionaries
dumped_tool_calls = ToolCallProcessor.dump(tool_calls)
# Serialize the dumped array
return json.dumps(dumped_tool_calls, indent=2)