config is now backed by pydantic (WIP)
- add models for config options - add function to regenerate config.yml - replace references to config with pydantic compatible references - remove unnecessary unwrap() statements TODO: - auto generate env vars - auto generate argparse - test loading a model
This commit is contained in:
parent
cb91670c7a
commit
362b8d5818
11 changed files with 297 additions and 94 deletions
248
common/config_models.py
Normal file
248
common/config_models.py
Normal file
|
|
@ -0,0 +1,248 @@
|
|||
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
||||
from typing import List, Optional, Union, get_type_hints
|
||||
|
||||
from common.utils import unwrap
|
||||
|
||||
|
||||
class config_config_model(BaseModel):
|
||||
config: Optional[str] = Field(
|
||||
None, description="Path to an overriding config.yml file"
|
||||
)
|
||||
|
||||
|
||||
class network_config_model(BaseModel):
|
||||
host: Optional[str] = Field("127.0.0.1", description="The IP to host on")
|
||||
port: Optional[int] = Field(5000, description="The port to host on")
|
||||
disable_auth: Optional[bool] = Field(
|
||||
False, description="Disable HTTP token authentication with requests"
|
||||
)
|
||||
send_tracebacks: Optional[bool] = Field(
|
||||
False, description="Decide whether to send error tracebacks over the API"
|
||||
)
|
||||
api_servers: Optional[List[str]] = Field(
|
||||
[
|
||||
"OAI",
|
||||
],
|
||||
description="API servers to enable. Options: (OAI, Kobold)",
|
||||
)
|
||||
|
||||
|
||||
class logging_config_model(BaseModel):
|
||||
log_prompt: Optional[bool] = Field(False, description="Enable prompt logging")
|
||||
log_generation_params: Optional[bool] = Field(
|
||||
False, description="Enable generation parameter logging"
|
||||
)
|
||||
log_requests: Optional[bool] = Field(False, description="Enable request logging")
|
||||
|
||||
|
||||
class model_config_model(BaseModel):
|
||||
model_dir: str = Field(
|
||||
"models",
|
||||
description="Overrides the directory to look for models (default: models). Windows users, do NOT put this path in quotes.",
|
||||
)
|
||||
use_dummy_models: Optional[bool] = Field(
|
||||
False,
|
||||
description="Sends dummy model names when the models endpoint is queried. Enable this if looking for specific OAI models.",
|
||||
)
|
||||
model_name: Optional[str] = Field(
|
||||
None,
|
||||
description="An initial model to load. Make sure the model is located in the model directory! REQUIRED: This must be filled out to load a model on startup.",
|
||||
)
|
||||
use_as_default: List[str] = Field(
|
||||
default_factory=list,
|
||||
description="Names of args to use as a default fallback for API load requests (default: []). Example: ['max_seq_len', 'cache_mode']",
|
||||
)
|
||||
max_seq_len: Optional[int] = Field(
|
||||
None,
|
||||
description="Max sequence length. Fetched from the model's base sequence length in config.json by default.",
|
||||
)
|
||||
override_base_seq_len: Optional[int] = Field(
|
||||
None,
|
||||
description="Overrides base model context length. WARNING: Only use this if the model's base sequence length is incorrect.",
|
||||
)
|
||||
tensor_parallel: Optional[bool] = Field(
|
||||
False,
|
||||
description="Load model with tensor parallelism. Fallback to autosplit if GPU split isn't provided.",
|
||||
)
|
||||
gpu_split_auto: Optional[bool] = Field(
|
||||
True,
|
||||
description="Automatically allocate resources to GPUs (default: True). Not parsed for single GPU users.",
|
||||
)
|
||||
autosplit_reserve: List[int] = Field(
|
||||
[96],
|
||||
description="Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0). Represented as an array of MB per GPU.",
|
||||
)
|
||||
gpu_split: List[float] = Field(
|
||||
default_factory=list,
|
||||
description="An integer array of GBs of VRAM to split between GPUs (default: []). Used with tensor parallelism.",
|
||||
)
|
||||
rope_scale: Optional[float] = Field(
|
||||
1.0,
|
||||
description="Rope scale (default: 1.0). Same as compress_pos_emb. Only use if the model was trained on long context with rope.",
|
||||
)
|
||||
rope_alpha: Optional[Union[float, str]] = Field(
|
||||
1.0,
|
||||
description="Rope alpha (default: 1.0). Same as alpha_value. Set to 'auto' to auto-calculate.",
|
||||
)
|
||||
cache_mode: Optional[str] = Field(
|
||||
"FP16",
|
||||
description="Enable different cache modes for VRAM savings (default: FP16). Possible values: FP16, Q8, Q6, Q4.",
|
||||
)
|
||||
cache_size: Optional[int] = Field(
|
||||
None,
|
||||
description="Size of the prompt cache to allocate (default: max_seq_len). Must be a multiple of 256.",
|
||||
)
|
||||
chunk_size: Optional[int] = Field(
|
||||
2048,
|
||||
description="Chunk size for prompt ingestion (default: 2048). A lower value reduces VRAM usage but decreases ingestion speed.",
|
||||
)
|
||||
max_batch_size: Optional[int] = Field(
|
||||
None,
|
||||
description="Set the maximum number of prompts to process at one time (default: None/Automatic). Automatically calculated if left blank.",
|
||||
)
|
||||
prompt_template: Optional[str] = Field(
|
||||
None,
|
||||
description="Set the prompt template for this model. If empty, attempts to look for the model's chat template.",
|
||||
)
|
||||
num_experts_per_token: Optional[int] = Field(
|
||||
None,
|
||||
description="Number of experts to use per token. Fetched from the model's config.json. For MoE models only.",
|
||||
)
|
||||
fasttensors: Optional[bool] = Field(
|
||||
False,
|
||||
description="Enables fasttensors to possibly increase model loading speeds (default: False).",
|
||||
)
|
||||
|
||||
|
||||
class draft_model_config_model(BaseModel):
|
||||
draft_model_dir: Optional[str] = Field(
|
||||
"models",
|
||||
description="Overrides the directory to look for draft models (default: models)",
|
||||
)
|
||||
draft_model_name: Optional[str] = Field(
|
||||
None,
|
||||
description="An initial draft model to load. Ensure the model is in the model directory.",
|
||||
)
|
||||
draft_rope_scale: Optional[float] = Field(
|
||||
1.0,
|
||||
description="Rope scale for draft models (default: 1.0). Same as compress_pos_emb. Use if the draft model was trained on long context with rope.",
|
||||
)
|
||||
draft_rope_alpha: Optional[float] = Field(
|
||||
None,
|
||||
description="Rope alpha for draft models (default: None). Same as alpha_value. Leave blank to auto-calculate the alpha value.",
|
||||
)
|
||||
draft_cache_mode: Optional[str] = Field(
|
||||
"FP16",
|
||||
description="Cache mode for draft models to save VRAM (default: FP16). Possible values: FP16, Q8, Q6, Q4.",
|
||||
)
|
||||
|
||||
|
||||
class lora_instance_model(BaseModel):
|
||||
name: str = Field(..., description="Name of the LoRA model")
|
||||
scaling: float = Field(
|
||||
1.0, description="Scaling factor for the LoRA model (default: 1.0)"
|
||||
)
|
||||
|
||||
|
||||
class lora_config_model(BaseModel):
|
||||
lora_dir: Optional[str] = Field(
|
||||
"loras", description="Directory to look for LoRAs (default: 'loras')"
|
||||
)
|
||||
loras: Optional[List[lora_instance_model]] = Field(
|
||||
None,
|
||||
description="List of LoRAs to load and associated scaling factors (default scaling: 1.0)",
|
||||
)
|
||||
|
||||
|
||||
class sampling_config_model(BaseModel):
|
||||
override_preset: Optional[str] = Field(
|
||||
None, description="Select a sampler override preset"
|
||||
)
|
||||
|
||||
|
||||
class developer_config_model(BaseModel):
|
||||
unsafe_launch: Optional[bool] = Field(
|
||||
False, description="Skip Exllamav2 version check"
|
||||
)
|
||||
disable_request_streaming: Optional[bool] = Field(
|
||||
False, description="Disables API request streaming"
|
||||
)
|
||||
cuda_malloc_backend: Optional[bool] = Field(
|
||||
False, description="Runs with the pytorch CUDA malloc backend"
|
||||
)
|
||||
uvloop: Optional[bool] = Field(
|
||||
False, description="Run asyncio using Uvloop or Winloop"
|
||||
)
|
||||
realtime_process_priority: Optional[bool] = Field(
|
||||
False,
|
||||
description="Set process to use a higher priority For realtime process priority, run as administrator or sudo Otherwise, the priority will be set to high",
|
||||
)
|
||||
|
||||
|
||||
class embeddings_config_model(BaseModel):
|
||||
embedding_model_dir: Optional[str] = Field(
|
||||
"models",
|
||||
description="Overrides directory to look for embedding models (default: models)",
|
||||
)
|
||||
embeddings_device: Optional[str] = Field(
|
||||
"cpu",
|
||||
description="Device to load embedding models on (default: cpu). Possible values: cpu, auto, cuda. If using an AMD GPU, set this value to 'cuda'.",
|
||||
)
|
||||
embedding_model_name: Optional[str] = Field(
|
||||
None, description="The embeddings model to load"
|
||||
)
|
||||
|
||||
|
||||
class tabby_config_model(BaseModel):
|
||||
config: config_config_model = Field(default_factory=config_config_model)
|
||||
network: network_config_model = Field(default_factory=network_config_model)
|
||||
logging: logging_config_model = Field(default_factory=logging_config_model)
|
||||
model: model_config_model = Field(default_factory=model_config_model)
|
||||
draft_model: draft_model_config_model = Field(
|
||||
default_factory=draft_model_config_model
|
||||
)
|
||||
lora: lora_config_model = Field(default_factory=lora_config_model)
|
||||
sampling: sampling_config_model = Field(default_factory=sampling_config_model)
|
||||
developer: developer_config_model = Field(default_factory=developer_config_model)
|
||||
embeddings: embeddings_config_model = Field(default_factory=embeddings_config_model)
|
||||
|
||||
@model_validator(mode="before")
|
||||
def set_defaults(cls, values):
|
||||
for field_name, field_value in values.items():
|
||||
if field_value is None:
|
||||
default_instance = cls.__annotations__[field_name]().dict()
|
||||
values[field_name] = cls.__annotations__[field_name](**default_instance)
|
||||
return values
|
||||
|
||||
model_config = ConfigDict(validate_assignment=True)
|
||||
|
||||
|
||||
def generate_config_file(filename="config_sample.yml", indentation=2):
|
||||
schema = tabby_config_model.model_json_schema()
|
||||
|
||||
def dump_def(id: str, indent=2):
|
||||
yaml = ""
|
||||
indent = " " * indentation * indent
|
||||
id = id.split("/")[-1]
|
||||
|
||||
section = schema["$defs"][id]["properties"]
|
||||
for property in section.keys(): # get type
|
||||
comment = section[property]["description"]
|
||||
yaml += f"{indent}# {comment}\n"
|
||||
|
||||
value = unwrap(section[property].get("default"), "")
|
||||
yaml += f"{indent}{property}: {value}\n\n"
|
||||
|
||||
return yaml + "\n"
|
||||
|
||||
yaml = ""
|
||||
for section in schema["properties"].keys():
|
||||
yaml += f"{section}:\n"
|
||||
yaml += dump_def(schema["properties"][section]["$ref"])
|
||||
yaml += "\n"
|
||||
|
||||
with open(filename, "w") as f:
|
||||
f.write(yaml)
|
||||
|
||||
|
||||
# generate_config_file("test.yml")
|
||||
|
|
@ -76,9 +76,9 @@ def _get_download_folder(repo_id: str, repo_type: str, folder_name: Optional[str
|
|||
"""Gets the download folder for the repo."""
|
||||
|
||||
if repo_type == "lora":
|
||||
download_path = pathlib.Path(config.lora.get("lora_dir") or "loras")
|
||||
download_path = pathlib.Path(config.lora.lora_dir)
|
||||
else:
|
||||
download_path = pathlib.Path(config.model.get("model_dir") or "models")
|
||||
download_path = pathlib.Path(config.model.model_dir)
|
||||
|
||||
download_path = download_path / (folder_name or repo_id.split("/")[-1])
|
||||
return download_path
|
||||
|
|
|
|||
|
|
@ -6,37 +6,19 @@ from pydantic import BaseModel
|
|||
from loguru import logger
|
||||
from typing import Dict, Optional
|
||||
|
||||
|
||||
class GenLogPreferences(BaseModel):
|
||||
"""Logging preference config."""
|
||||
|
||||
prompt: bool = False
|
||||
generation_params: bool = False
|
||||
|
||||
from common.tabby_config import config
|
||||
|
||||
# Global logging preferences constant
|
||||
PREFERENCES = GenLogPreferences()
|
||||
|
||||
|
||||
def update_from_dict(options_dict: Dict[str, bool]):
|
||||
"""Wrapper to set the logging config for generations"""
|
||||
global PREFERENCES
|
||||
|
||||
# Force bools on the dict
|
||||
for value in options_dict.values():
|
||||
if value is None:
|
||||
value = False
|
||||
|
||||
PREFERENCES = GenLogPreferences.model_validate(options_dict)
|
||||
PREFERENCES = config.logging
|
||||
|
||||
|
||||
def broadcast_status():
|
||||
"""Broadcasts the current logging status"""
|
||||
enabled = []
|
||||
if PREFERENCES.prompt:
|
||||
if PREFERENCES.log_prompt:
|
||||
enabled.append("prompts")
|
||||
|
||||
if PREFERENCES.generation_params:
|
||||
if PREFERENCES.log_generation_params:
|
||||
enabled.append("generation params")
|
||||
|
||||
if len(enabled) > 0:
|
||||
|
|
@ -47,13 +29,13 @@ def broadcast_status():
|
|||
|
||||
def log_generation_params(**kwargs):
|
||||
"""Logs generation parameters to console."""
|
||||
if PREFERENCES.generation_params:
|
||||
if PREFERENCES.log_generation_params:
|
||||
logger.info(f"Generation options: {kwargs}\n")
|
||||
|
||||
|
||||
def log_prompt(prompt: str, request_id: str, negative_prompt: Optional[str]):
|
||||
"""Logs the prompt to console."""
|
||||
if PREFERENCES.prompt:
|
||||
if PREFERENCES.log_prompt:
|
||||
formatted_prompt = "\n" + prompt
|
||||
logger.info(
|
||||
f"Prompt (ID: {request_id}): {formatted_prompt if prompt else 'Empty'}\n"
|
||||
|
|
@ -66,7 +48,7 @@ def log_prompt(prompt: str, request_id: str, negative_prompt: Optional[str]):
|
|||
|
||||
def log_response(request_id: str, response: str):
|
||||
"""Logs the response to console."""
|
||||
if PREFERENCES.prompt:
|
||||
if PREFERENCES.log_prompt:
|
||||
formatted_response = "\n" + response
|
||||
logger.info(
|
||||
f"Response (ID: {request_id}): "
|
||||
|
|
|
|||
|
|
@ -153,7 +153,7 @@ async def unload_embedding_model():
|
|||
def get_config_default(key: str, model_type: str = "model"):
|
||||
"""Fetches a default value from model config if allowed by the user."""
|
||||
|
||||
default_keys = unwrap(config.model.get("use_as_default"), [])
|
||||
default_keys = unwrap(config.model.use_as_default, [])
|
||||
|
||||
# Add extra keys to defaults
|
||||
default_keys.append("embeddings_device")
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@ def handle_request_error(message: str, exc_info: bool = True):
|
|||
"""Log a request error to the console."""
|
||||
|
||||
trace = traceback.format_exc()
|
||||
send_trace = unwrap(config.network.get("send_tracebacks"), False)
|
||||
send_trace = config.network.send_tracebacks
|
||||
|
||||
error_message = TabbyRequestErrorMessage(
|
||||
message=message, trace=trace if send_trace else None
|
||||
|
|
@ -134,7 +134,7 @@ def get_global_depends():
|
|||
|
||||
depends = [Depends(add_request_id)]
|
||||
|
||||
if config.logging.get("requests"):
|
||||
if config.logging.log_requests:
|
||||
depends.append(Depends(log_request))
|
||||
|
||||
return depends
|
||||
|
|
|
|||
|
|
@ -4,21 +4,11 @@ from loguru import logger
|
|||
from typing import Optional
|
||||
|
||||
from common.utils import unwrap, merge_dicts
|
||||
from common.config_models import tabby_config_model
|
||||
import common.config_models
|
||||
|
||||
|
||||
class TabbyConfig:
|
||||
network: dict = {}
|
||||
logging: dict = {}
|
||||
model: dict = {}
|
||||
draft_model: dict = {}
|
||||
lora: dict = {}
|
||||
sampling: dict = {}
|
||||
developer: dict = {}
|
||||
embeddings: dict = {}
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
class TabbyConfig(tabby_config_model):
|
||||
def load_config(self, arguments: Optional[dict] = None):
|
||||
"""load the global application config"""
|
||||
|
||||
|
|
@ -30,14 +20,11 @@ class TabbyConfig:
|
|||
|
||||
merged_config = merge_dicts(*configs)
|
||||
|
||||
self.network = unwrap(merged_config.get("network"), {})
|
||||
self.logging = unwrap(merged_config.get("logging"), {})
|
||||
self.model = unwrap(merged_config.get("model"), {})
|
||||
self.draft_model = unwrap(merged_config.get("draft"), {})
|
||||
self.lora = unwrap(merged_config.get("draft"), {})
|
||||
self.sampling = unwrap(merged_config.get("sampling"), {})
|
||||
self.developer = unwrap(merged_config.get("developer"), {})
|
||||
self.embeddings = unwrap(merged_config.get("embeddings"), {})
|
||||
for field in tabby_config_model.model_fields.keys():
|
||||
value = unwrap(merged_config.get(field), {})
|
||||
model = getattr(common.config_models, f"{field}_config_model")
|
||||
|
||||
setattr(self, field, model.parse_obj(value))
|
||||
|
||||
def _from_file(self, config_path: pathlib.Path):
|
||||
"""loads config from a given file path"""
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue