Exl3: Add vision capability
This commit is contained in:
parent
4605c0f6bd
commit
1c9891bf04
4 changed files with 80 additions and 7 deletions
|
|
@ -14,7 +14,7 @@ if dependencies.exllamav2:
|
||||||
|
|
||||||
# Fetch the return type on runtime
|
# Fetch the return type on runtime
|
||||||
@alru_cache(20)
|
@alru_cache(20)
|
||||||
async def get_image_embedding(url: str) -> "ExLlamaV2MMEmbedding":
|
async def get_image_embedding_exl2(url: str) -> "ExLlamaV2MMEmbedding":
|
||||||
image = await get_image(url)
|
image = await get_image(url)
|
||||||
return model.container.vision_model.get_image_embeddings(
|
return model.container.vision_model.get_image_embeddings(
|
||||||
model=model.container.model,
|
model=model.container.model,
|
||||||
|
|
@ -25,4 +25,4 @@ async def get_image_embedding(url: str) -> "ExLlamaV2MMEmbedding":
|
||||||
|
|
||||||
|
|
||||||
def clear_image_embedding_cache():
|
def clear_image_embedding_cache():
|
||||||
get_image_embedding.cache_clear()
|
get_image_embedding_exl2.cache_clear()
|
||||||
|
|
|
||||||
|
|
@ -69,6 +69,7 @@ class ExllamaV3Container(BaseModelContainer):
|
||||||
config: Optional[Config] = None
|
config: Optional[Config] = None
|
||||||
draft_config: Optional[Config] = None
|
draft_config: Optional[Config] = None
|
||||||
generator: Optional[AsyncGenerator] = None
|
generator: Optional[AsyncGenerator] = None
|
||||||
|
vision_model: Optional[Model] = None
|
||||||
|
|
||||||
# Class-specific vars
|
# Class-specific vars
|
||||||
gpu_split: Optional[List[float]] = None
|
gpu_split: Optional[List[float]] = None
|
||||||
|
|
@ -112,6 +113,19 @@ class ExllamaV3Container(BaseModelContainer):
|
||||||
self.model = Model.from_config(self.config)
|
self.model = Model.from_config(self.config)
|
||||||
self.tokenizer = Tokenizer.from_config(self.config)
|
self.tokenizer = Tokenizer.from_config(self.config)
|
||||||
|
|
||||||
|
# Prepare vision model if requested in config
|
||||||
|
self.use_vision = kwargs.get("vision")
|
||||||
|
if self.use_vision and "vision" in self.config.model_classes:
|
||||||
|
self.vision_model = Model.from_config(self.config, component="vision")
|
||||||
|
else:
|
||||||
|
logger.warning(
|
||||||
|
"The provided model does not have vision capabilities that are "
|
||||||
|
"supported by ExllamaV3. "
|
||||||
|
"Vision input is disabled."
|
||||||
|
)
|
||||||
|
self.vision_model = None
|
||||||
|
self.use_vision = False
|
||||||
|
|
||||||
# Fallback to 4096 since exl3 can't fetch from HF's config.json
|
# Fallback to 4096 since exl3 can't fetch from HF's config.json
|
||||||
self.max_seq_len = unwrap(kwargs.get("max_seq_len"), 4096)
|
self.max_seq_len = unwrap(kwargs.get("max_seq_len"), 4096)
|
||||||
|
|
||||||
|
|
@ -418,6 +432,14 @@ class ExllamaV3Container(BaseModelContainer):
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def load_model_sync(self, progress_callback=None):
|
def load_model_sync(self, progress_callback=None):
|
||||||
|
if self.use_vision:
|
||||||
|
for value in self.vision_model.load_gen(
|
||||||
|
reserve_per_device=self.autosplit_reserve,
|
||||||
|
callback=progress_callback
|
||||||
|
):
|
||||||
|
if value:
|
||||||
|
yield value
|
||||||
|
|
||||||
if self.use_draft_model:
|
if self.use_draft_model:
|
||||||
for value in self.draft_model.load_gen(
|
for value in self.draft_model.load_gen(
|
||||||
reserve_per_device=self.autosplit_reserve,
|
reserve_per_device=self.autosplit_reserve,
|
||||||
|
|
@ -527,6 +549,9 @@ class ExllamaV3Container(BaseModelContainer):
|
||||||
A list of integer token IDs.
|
A list of integer token IDs.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
mm_embeddings: MultimodalEmbeddingWrapper = kwargs.get("embeddings")
|
||||||
|
mm_embeddings_content = mm_embeddings.content if mm_embeddings else []
|
||||||
|
|
||||||
return (
|
return (
|
||||||
self.tokenizer.encode(
|
self.tokenizer.encode(
|
||||||
text,
|
text,
|
||||||
|
|
@ -534,6 +559,7 @@ class ExllamaV3Container(BaseModelContainer):
|
||||||
kwargs.get("add_bos_token"), self.hf_model.add_bos_token()
|
kwargs.get("add_bos_token"), self.hf_model.add_bos_token()
|
||||||
),
|
),
|
||||||
encode_special_tokens=unwrap(kwargs.get("encode_special_tokens"), True),
|
encode_special_tokens=unwrap(kwargs.get("encode_special_tokens"), True),
|
||||||
|
embeddings=mm_embeddings_content
|
||||||
)
|
)
|
||||||
.flatten()
|
.flatten()
|
||||||
.tolist()
|
.tolist()
|
||||||
|
|
@ -802,6 +828,9 @@ class ExllamaV3Container(BaseModelContainer):
|
||||||
stop_conditions = params.stop
|
stop_conditions = params.stop
|
||||||
add_bos_token = unwrap(params.add_bos_token, self.hf_model.add_bos_token())
|
add_bos_token = unwrap(params.add_bos_token, self.hf_model.add_bos_token())
|
||||||
|
|
||||||
|
# Get multimodal embeddings if present
|
||||||
|
mm_embeddings_content = mm_embeddings.content if mm_embeddings else []
|
||||||
|
|
||||||
# Fetch EOS tokens from generation_config if they exist
|
# Fetch EOS tokens from generation_config if they exist
|
||||||
eos_tokens = self.hf_model.eos_tokens() or [self.tokenizer.eos_token_id]
|
eos_tokens = self.hf_model.eos_tokens() or [self.tokenizer.eos_token_id]
|
||||||
|
|
||||||
|
|
@ -812,6 +841,7 @@ class ExllamaV3Container(BaseModelContainer):
|
||||||
prompt,
|
prompt,
|
||||||
add_bos=add_bos_token,
|
add_bos=add_bos_token,
|
||||||
encode_special_tokens=True,
|
encode_special_tokens=True,
|
||||||
|
embeddings=mm_embeddings_content,
|
||||||
)
|
)
|
||||||
for prompt in prompts
|
for prompt in prompts
|
||||||
]
|
]
|
||||||
|
|
@ -855,6 +885,7 @@ class ExllamaV3Container(BaseModelContainer):
|
||||||
max_new_tokens=max_tokens,
|
max_new_tokens=max_tokens,
|
||||||
stop_conditions=stop_conditions,
|
stop_conditions=stop_conditions,
|
||||||
banned_strings=params.banned_strings,
|
banned_strings=params.banned_strings,
|
||||||
|
embeddings=mm_embeddings_content,
|
||||||
)
|
)
|
||||||
|
|
||||||
generated_tokens = 0
|
generated_tokens = 0
|
||||||
|
|
|
||||||
27
backends/exllamav3/vision.py
Normal file
27
backends/exllamav3/vision.py
Normal file
|
|
@ -0,0 +1,27 @@
|
||||||
|
"""Vision utilities for ExLlamaV2."""
|
||||||
|
|
||||||
|
from async_lru import alru_cache
|
||||||
|
|
||||||
|
from common import model
|
||||||
|
from common.optional_dependencies import dependencies
|
||||||
|
from common.image_util import get_image
|
||||||
|
|
||||||
|
# Since this is used outside the Exl3 backend, the dependency
|
||||||
|
# may be optional
|
||||||
|
if dependencies.exllamav3:
|
||||||
|
from exllamav3.tokenizer import MMEmbedding
|
||||||
|
|
||||||
|
|
||||||
|
# Fetch the return type on runtime
|
||||||
|
@alru_cache(20)
|
||||||
|
async def get_image_embedding_exl3(url: str) -> "MMEmbedding":
|
||||||
|
image = await get_image(url)
|
||||||
|
return model.container.vision_model.get_image_embeddings(
|
||||||
|
tokenizer=model.container.tokenizer,
|
||||||
|
image=image,
|
||||||
|
text_alias=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def clear_image_embedding_cache():
|
||||||
|
get_image_embedding_exl3.cache_clear()
|
||||||
|
|
@ -1,4 +1,5 @@
|
||||||
from backends.exllamav2.vision import get_image_embedding
|
from backends.exllamav2.vision import get_image_embedding_exl2
|
||||||
|
from backends.exllamav3.vision import get_image_embedding_exl3
|
||||||
from common import model
|
from common import model
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
@ -8,7 +9,8 @@ from common.optional_dependencies import dependencies
|
||||||
|
|
||||||
if dependencies.exllamav2:
|
if dependencies.exllamav2:
|
||||||
from exllamav2 import ExLlamaV2VisionTower
|
from exllamav2 import ExLlamaV2VisionTower
|
||||||
|
if dependencies.exllamav3:
|
||||||
|
from exllamav3 import Model
|
||||||
|
|
||||||
class MultimodalEmbeddingWrapper(BaseModel):
|
class MultimodalEmbeddingWrapper(BaseModel):
|
||||||
"""Common multimodal embedding wrapper"""
|
"""Common multimodal embedding wrapper"""
|
||||||
|
|
@ -20,12 +22,25 @@ class MultimodalEmbeddingWrapper(BaseModel):
|
||||||
async def add(self, url: str):
|
async def add(self, url: str):
|
||||||
# Determine the type of vision embedding to use
|
# Determine the type of vision embedding to use
|
||||||
if not self.type:
|
if not self.type:
|
||||||
if isinstance(model.container.vision_model, ExLlamaV2VisionTower):
|
if (
|
||||||
|
dependencies.exllamav2 and
|
||||||
|
isinstance(model.container.vision_model, ExLlamaV2VisionTower)
|
||||||
|
):
|
||||||
self.type = "ExLlamaV2MMEmbedding"
|
self.type = "ExLlamaV2MMEmbedding"
|
||||||
|
elif (
|
||||||
|
dependencies.exllamav3 and
|
||||||
|
isinstance(model.container.vision_model, Model)
|
||||||
|
):
|
||||||
|
self.type = "MMEmbedding"
|
||||||
|
|
||||||
|
# Create the embedding
|
||||||
if self.type == "ExLlamaV2MMEmbedding":
|
if self.type == "ExLlamaV2MMEmbedding":
|
||||||
embedding = await get_image_embedding(url)
|
embedding = await get_image_embedding_exl2(url)
|
||||||
|
self.content.append(embedding)
|
||||||
|
self.text_alias.append(embedding.text_alias)
|
||||||
|
elif self.type == "MMEmbedding":
|
||||||
|
embedding = await get_image_embedding_exl3(url)
|
||||||
self.content.append(embedding)
|
self.content.append(embedding)
|
||||||
self.text_alias.append(embedding.text_alias)
|
self.text_alias.append(embedding.text_alias)
|
||||||
else:
|
else:
|
||||||
logger.error("No valid vision model to create embedding")
|
logger.error("No valid vision model to create embedding")
|
||||||
Loading…
Add table
Add a link
Reference in a new issue